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The generation of random bits is of enormous importance in modern information science. Cryptographic
security is based on random numbers which require a physical process for their generation. This is
commonly performed by hardware random-number generators. These often exhibit a number of problems,
namely experimental bias, memory in the system, and other technical subtleties, which reduce the
reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to “iron out”
such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output
of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a
minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum
fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is
derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and
associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes
all relevant randomness measures. The random nature of the generated binary outcome is furthermore
confirmed by an analysis of resulting conditional entropies.
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I. INTRODUCTION

Random numbers are of utter importance in our everyday
life, even if many of us are not into gambling or statistics
[1]. The most crucial use of random numbers is strong
cryptography—securing modern communication, money
transfers, and storage of sensitive information. The encryp-
tion keys which are used to unlock encrypted data are
secured by mathematical hard problems, most notably the
discrete logarithm problem or prime-number factorization.
The underlying keys are based on random numbers. As
recently shown, one of the most efficient attack vectors on
modern cryptography is the supply of weak random
numbers [2,3], reducing the key space to a fraction of
the mathematical probable: Assuming a modern encryption
key with N bits results in a key space of 2N possibilities—

with large N this requires a long time for a brute-force
decryption process. When such a key is based on only
n ≪ N possible outcomes of a random-number generator,
the decryption of the data might be a question of seconds.
In the computer age, the first idea that might come tomind

is a computer-based randomness generator. Unfortunately,
such generators are commonly defined based on a recurrence
relation, and can only emit (partially very long) cycles of
seemingly random bits [4,5]. Therefore, hardware-based
random-number generators were presented in the past.
The early hardware random-number generators were a die
[1] or simply a coin [6]. Both generators arewell known even
to nonscientists. In mathematical terms, a coin toss is a
Bernoulli trial of the sample space Ω ¼ f0; 1g—at least
when the coin is not landing on its edge [7]. A fair coin is
defined as a model system which exhibits no bias, cannot
land on the edge, has nomemory, and exhibits the probability
pð0Þ ¼ pð1Þ ¼ 1=2. This system iswell covered in literature
[6,8–10]. Besides classical random bit generators, which
have to fulfill a number of requirements [11], a recent
development is quantum random-number generators, which
utilize the inherently unpredictable nature of quantum effects
to deliver random numbers [12–19].
For future applications, electrical circuits may eventually

be completely replaced by solely optical devices due to the
practical advantages of photons in terms of speed, leakage,
heat development, and wiring. Therefore, we introduce an
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“all-optical” randomness generation, in which the random
process is independent of a particular detector implemen-
tation. A specific example is optical parametric oscillators
(OPOs), c, degenerate ones, which were used for this task
before [20–22]. The relative phase of two generators results
in a two-state outcome—but it requires experimental
efforts, such as two phase-stabilized OPOs. As outlined
in the literature, the OPO’s outcoming phase is based on
quantum processes, such that this represents another form
of quantum randomness generation [22–28]. The gener-
ation of random numbers by an OPO has some advantages:
the speed of an optical generator, its equienergetic bist-
ability, as well as a demodulator-based and ambiguity-free
measurement principle. By “ambiguity free” we refer to a
measurement that has two (or more) definite outcomes,
which cannot be confused due to technical issues of the
measurement apparatus. In quantum randomness genera-
tion with single photon detectors, such ambiguities can
occur, for example, due to dead times, electrical jitter, and
varying detection efficiencies [29].
Here, we present the use of a bistable configuration

implemented in a period-doubling optical parametric oscil-
lator for randomness generation. To the best of our knowl-
edge, this is the first experimental utilization of a period-2
(P2) state in an OPO reported in the literature to date. A
simplified model is depicted in Fig. 1. The involved
bistability is equienergetic and equiprobable; only two
outcomes are possible and no bias is observed. For
randomness generation, the stream of binary outcomes
can be used directly, and no additional unbiasing or bit
extraction is required. We test the outcome against the

predicted outcomes of a fair coin toss. At the end of the
paper, we compute the most conservative bound, the min
entropy, against the size of a finite sample of bits origi-
nating from the generator.

II. EXPERIMENTAL SCHEME

A homebuilt fiber-feedback OPO [30,31] is pumped
by a mode-locked 450-fs, 1032-nm Yb:KGW oscillator
[Fig. 2(a)]. The gain element is a periodically poled lithium
niobate crystal. The repetition rate is defined by the laser
and amounts to 40.9 MHz; the length of the OPO cavity is
matched to this by a movable mirror. A part of the OPO
cavity consists of a single-mode feedback fiber, which in
combination with the variable output coupler allows us to
control the effective intracavity nonlinearity. The output
signal is detected on a reverse-biased InGaAs photodiode
(Hamamatsu). The signal is monitored in real time on an
oscilloscope [see Fig. 2(c)]. Alternatively, the signal is fed
into a lock-in amplifier for further analysis.
When the pump power is varied, the OPO exhibits a

bimodal behavior, which can be identified as period doubling
[32–36]. Above its oscillation threshold, theOPOoperates in
the steady state [yellow trace in Fig. 2(b)], which results in an
output pulse trainwith identical subsequent pulses, as known
from any mode-locked laser. Upon further increase of pump
power, the system enters the so-called period-2 state, which
delivers alternating pulses with different pulse energy, peak
power, and spectral properties. This behavior originates from
the interplay of spectral selective gain and nonlinear feed-
back [37]. As a result of the synchronous pumping of the
OPO, these pulses are temporally aligned with the pump
frequency.
When the pump frequency (40.9 MHz in this case) is

electronically divided by 2, the pulse train in the P2 state
has a defined phase against this derived reference signal.
When the OPO is turned on, this phase may be either in
phase or, with 50% probability, out of phase. This phase
difference of π can be unambiguously measured with
various demodulation techniques. A simple and convenient
way is the relative multiplication between the detected
signal and the reference. A simple commercial solution is
the detection with a lock-in amplifier, which allows for a
direct access to the relative phase φ. Here, a Zurich
Instruments lock-in amplifier is used (UHFLI). The meas-
urement time to determine the phase amounts to 1 μs.
For random-number generation, the OPO is turned on

and off by an optical chopper, which is installed such that it
can inhibit the cavity oscillation. Figure 2(c) shows the
sequence of generating one single bit in the generator: The
measured signal (red) is measured versus the reference
signal (REF), which corresponds to half of the repetition
rate of the pump laser (frep). This measurement is per-
formed twice in one chopper cycle: when the OPO is
off—as the control signal—and when the OPO is in the P2
state—as the signal of the running oscillator, the tossed and

(a)

(a)

FIG. 1. Operation principle of the all-optical randomness
generator. (a) The output of an optical parametric oscillator
(OPO) generates two different output states unambiguously. Both
outputs are equienergetic and equiprobable, and are based on the
transient oscillation of the OPO. We associate the outcomes to an
output bit, comparable to a coin toss. (b) The detection is
performed by a phase measurement (φ) against an external
reference clock, supplied by the pump laser. H and L denote
the different pulse energy outputs of the OPO, which operates in
the period-2 state, named P2.
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landed coin. The control measurement is performed to
verify that two subsequent measurements do not carry
spurious information from one to the next outcome. A
sequence of four consecutive measurements in the on state
is depicted in Fig. 2(d). H and L denote the two alternating,
high and low, pulse energy outputs of the OPO in the P2
state, respectively.
The measurement outcome is saved by a MATLAB

(Matlab, Inc.) script into a comprehensive set of data,
which saves all measured phases. These can be either
analyzed as direct phases or, alternatively, processed as bit
outcomes.
The measured phase of the oscillating OPO exhibits

essentially two measurement outcomes: −π=2 and π=2. By
means of a simple threshold, the measurements are selected
into a binary outcome. Values above zero phase are
associated with the outcome 1, whereas values below zero
are assigned a value of 0. Equally, these outcomes are the
two possible stable configurations of the P2 state,
LHLH… (0) or HLHL… (1), where the order is fixed
by the reference signal, at half of the pump frequency [see
Fig. 2(d)]. In the description above, a bold character
denotes that the pulse from the OPO is not coinciding
with the reference pulse train. This corresponds to a (red)
colored character in Fig. 1 or 2. The measurement results
are plotted in a histogram, and exhibit a very narrow
distribution around the estimated value [see Fig. 3(b)].

III. ORIGIN OF RANDOMNESS

It is well established in the literature that the randomness
element in the transient process of a starting OPO originates
from quantum effects. These include vacuum fluctuations
in the gain element as well as cavity losses [22–28]. The
primary quantum process in the buildup of the oscillation is
the generation of single photons in a spontaneous down-
conversion process caused by pumping the nonlinear gain
crystal [22,27,28]. The exact contribution of these proc-
esses to the formation of the P2 state is currently under
investigation. In the context of randomness generation, it is
important to note that the period-doubling attractor is, in
particular, not a chaotic attractor [38,39]. This is despite the
fact that period doubling and chaos might occur in one and
the same nonlinear system, as outlined in detail in the
Supplemental Material [40].
The independence of the primary randomness process

against small fluctuations of the pump power is a crucial
feature. In order to demonstrate this peculiarity, we perform
numerical pulse propagation simulations (RP Pro Pulse
from RP Photonics) of the transient process with an
artificially fixed additional seed. These show that a relative
intensity change of more than �1% is required to induce a
phase change by π in the measured outcome. However, the
measured relative intensity noise [41] integrated from
10 kHz to 20 MHz amounts to �0.0215% and is thus
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FIG. 2. Experimental scheme of randomness generation. (a) Experimental implementation of the optical parametric oscillator.
(b) Power-dependent output pulse energy. Note that both different output pulse train options are equienergetic. (c) Measured transition
scheme, periodic with the chopper frequency. The trigger pulse defines two measurements: one when the OPO is blocked (control), and
one when the P2 regime is reached (toss). The reference frequency is 40.9 MHz=2, supplied by the pump laser and a frequency divider.
(d) Interpretation of measurement outcomes as final bits.
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approximately a factor of 50 too low to be the relevant
driver of the randomness generation.
Moreover, the independence of subsequent measurement

outcomes is important, as discussed on the observed bits

below. Therefore, the interbit waiting time is reduced in an
additional experiment by a factor of 1000. This is per-
formed with the OPO operated in an extended cavity
configuration, such that four independent pulses oscillate
simultaneously in the cavity. A subsequent measurement
reads four bits within a single chopper cycle. This reduces
the relevant time scale for the comparison of successive bits
from 100 μs to 100 ns and thus eliminates the contribution
of mechanical vibrations, chopper jitter, thermal effects,
and pump intensity noise. Nevertheless, we measure alter-
nating bits, which would not be the case if any of the above
technical effects would cause the randomness (see
Supplemental Material [40]). These investigations indicate
that quantum effects are a significant source of randomness
in our system.
In order to further quantify the randomness this process

produces, we analyze the measured phase and its binary
representation for a large set of outcomes in the next section.

IV. FROM RAW BITS TO FINAL BITS

The first analysis of the acquired data involves the
measured phase φ of the OPO in its off state. Figure 3(a)
shows a histogram of the raw phase output of the lock-in,
right before each measurement of the running OPO. The
output numbers are divided into outcomes which preceed a
zero or a one, respectively. Evidently, both data sets are very
similar, and do not show any particular preference for
subsequent outcomes. The small bias (wavy curve) is based
on spurious signals reaching the lock-in amplifier and is
symmetric for both phase outcomes.
After the transient time has passed, a second measure-

ment determines the final state (OPO on). As above, this is
analyzed by the lock-in amplifier, resulting in a histogram
of events. Both possible outcomes are centered around
−π=2 and π=2, respectively. Their distribution is deter-
mined by experimental uncertainty to measure the phase.
This results from spurious phase information, spontaneous
down-conversion in the crystal, the sampling and meas-
urement time, and residual (phase) noise in the signal. The
width of the determined outcomes (1σ) amounts to
0.0023 rad. In other words, the outcomes are separated
by more than 400 standard deviations—excluding the
possibility that the two outcomes are confused. Such
ambiguity-free measurements cannot be achieved in gen-
erators that are based on photon counting due to, e.g., dark
counts [12,29,42].
In the course of approximately 1 day a number of 2 ×

2.25 × 108 measurements are performed. We now analyze a
possible bias or imbalance of the experimental outcomes,
caused, for example, by technical noise [43]. This noise
would produce additional measurement outcomes, which in
information theoretical terms add up to the randomness in
the transient process of the generator. For the analysis, the
bit stream is divided into substrings of length N, and the
experimental probability of the outcome 1 is determined.
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The distribution is centered around 0.5, independently of
the sample size N. The analysis reconfirms the width of the
distribution as σsingle ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npð1 − pÞp

=N. Note that the data
are not fitted, but the theoretical curve is depicted along
with the measured data.
The balance of the measurement outcomes is only one

indication of a well-balanced coin toss. Another important
measure is the conditional probability, which signifies
whether subsequent outcomes contain some form of
memory of the prior state of the oscillator. For this, a first
indication is given by the analysis of Figs. 3(a) and 3(b)—
still, this does not prove the independence of the outcomes of
subsequent measurements in the equilibrated OPO. The
conditional probability of obtaining the result 1 after a
preceding result 0 is denoted as pð1j0Þ, reading as the
probability of one conditioned on zero. This is defined as
pðxjyÞ ¼ pðx ∧ yÞ=pðyÞ, and is depicted in Fig. 3(c)
along with the theoretical prediction of its distribution
σcond ¼ 1=

ffiffiffiffiffiffiffi
2N

p
. An autocorrelation analysis, which also

accounts for higher-order bit-to-bit correlations, is given in
the Supplemental Material [40]. Again, the expected behav-
ior is reconfirmed and no memory in the system is evident.
Very common is theuseof so-called random-number tests.

The tests ent, theNIST test suite [44], the die-harder suite, or
the most comprehensive TestU01 suite [45] are commonly
known. Many people still believe that such tests are able to
showwhether a bit string is random or not. But they can only
deliver the proof that no substantial flaw occurred in the
implementation of a randombit generator.Moreover,most of
these tests are based on algorithmic information theory and
are designed to test algorithmically generated pseudorandom
numbers rather than random numbers generated by physical
processes [46]. Therefore, the statement that a certain bit
string passes all tests does not prove the random nature of the
input. Nonrandom and predictable numbers, such as the
binary expansion of π, pass all these tests flawlessly. As
expected, our presented generator passes all these tests, and a
sample output for the NIST suite is presented in the
Supplemental Material [40].
A subset of the described random number tests is the

analysis of different bit patterns and their occurrence in the
data set. This approach has been examined in early dis-
cussions on random-number testing [4]. Nowadays, other
authors suggest the use of information theoretic language for
random-number testing [46]. In this context, the coin tossing
constants by Feller [6], which are closely related to the
generalized Fibonacci numbers [8], describe the asymptotic
probability pðn; kÞ of the event that a sequence with the
length k of 1 or 0 does not occur in a sequence of n tosses of a
fair coin. Feller’s constants have the property

lim
n→∞

pðn; kÞαnþ1
k ¼ βk: ð1Þ

Table I displays the analysis of substrings of length
N ¼ 400 bits of the generator. This small number is chosen
to have nonvanishing values for the probabilities associated

with higher-order parameters (k > 5). The experimentally
determined value is given in the third column, and the
relative deviation of the order of 10−4 corresponds to the
square root (shot noise) of 2.25 × 108 recorded bits. The
computed values of the coin tossing constants match very
well to the assumed behavior of the supplied random bit
sequence.
The coin tossing constants analyze higher orders of

tuples than the conditional probability and are therefore
similar in this respect to a mathematical Borel normality
test [4], which analyzes the lexicographical occurrence of
all possible binary strings. Such a test was implemented by
Calude et al. for testing a number of hardware-based
randomness generators [47].
The above analysis on the probability of subsequent sets

of measurement outcomes underlines the behavior of an
ideal coin toss. An interesting effect occurs when we
process the measurement outcomes by pairing each bit
with exactly one neighboring bit, without allowing any
overlaps of the tuples—unlike as before. Although we find
all tuple permutations (00, 01, 10, 11) to be equally
probable, the waiting time, which is the “distance” between
two equivalent outcomes, is different between the bit-
changing (01, 10) and bit-equivalent outcomes (00, 11).
For the tuples including a bit flip, the predicted waiting
time is 4 consecutive tosses. On the other hand, a double
sequence of 00, or 11, has a predicted waiting time of 6
consecutive tosses. This is verified with the present set of
data and we determine values of 3.999 76 and 5.997 84,
respectively. Again, the relative uncertainty of approxi-
mately 10−4 corresponds to the length of the data set; it
proves that there is no further memory storage in the

TABLE I. Feller’s coin tossing constants. The constants are
related to the probability that a certain sequence of 1’s does not
occur in a set of random bits. Here, the sample size is N ¼ 400.
The ideal value of the coin tossing constant α is compared to the
values extracted from our experimental data. Relative change is
calculated as ðαideal − αextractedÞ=αideal. The relative uncertainty is
given by the finite length of the acquired data set.

k αideal αextracted Relative change

2 1.236 067 98 � � � � � �
3 1.087 378 03 � � � � � �
4 1.037 580 13 1.036 763 54 7.87010735 × 10−4

5 1.017 320 78 1.017 314 06 6.61125775 × 10−6

6 1.008 276 52 1.008 279 33 −2.78877013 × 10−6

7 1.004 034 11 1.004 037 01 −2.88459780 × 10−6

8 1.001 988 36 1.001 985 88 2.47363715 × 10−6

9 1.000 986 24 1.000 985 84 4.01117501 × 10−7

10 1.000 490 92 1.000 491 82 −8.99357769 × 10−7

11 1.000 244 86 1.000 246 24 −1.38152744 × 10−6

12 1.000 122 26 1.000 123 58 −1.31441456 × 10−6

13 1.000 061 09 1.000 061 63 −5.40416736 × 10−7

14 1.000 030 53 1.000 030 25 2.79986856 × 10−7

15 1.000 015 26 1.000 015 22 4.33916550 × 10−8
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measurement outcomes and reconfirms the predicted
behavior.
In summary, we conclude that themeasured raw bits of the

presented all-optical randomness generator using a nonlinear
feedbackOPO in the P2 state do not differ by anymeasurable
means from the ones of a perfect Bernoulli trial. This is
indicated by the independence of consecutive measurement
outcomes, the balance between the two probabilities, and
further tests, which resemble the expected outcomes of a
perfect coin toss. Subsequently, the required postprocessing
can be reduced to a minimum. Such a postprocessing would
generally be required for any physical implementation of a
fair (perfect) coin toss due to finite-size effects. We now turn
to the entropy analysis of the raw bit stream.

V. ENTROPY ESTIMATION

While all above measures suggest that the raw bits are
usable as a perfect source of random bits, we have ignored
an important information theoretical measure of the output
of the experimental apparatus so far: the generated entropy.
As we outline below, the crucial quality figure for a
randomness generator is the achievable entropy per output
bit. Ideally, each bit has the perfect entropy of unity, which
means that each generated bit can be used as an indepen-
dent optical coin toss and resembles the output of a fair
coin. But when a finite fraction of bits is analyzed, this can
only be proven if all 1’s and 0’s are equally balanced.
Intrinsically, there might be an unwanted (but statistically
allowed) bias. In this case, the determined entropy will be
lower than one. Because of the finite length, this is most
likely the case for the presented data set. A first naive
approach to calculate the entropy analyzes the balance of
the bit stream, and is given by the unconditional Shannon
entropy, which is defined as

HSh ¼
X
y

pðyÞI(pðyÞ) ¼ −
X
y

pðyÞlog2pðyÞ; ð2Þ

where pðyÞ is the single probability of obtaining 0 or 1 in
the full bit sequence, respectively. This, however, does not
consider any dependence or memory effects in the meas-
urement outcomes, where, for example, an alternating
sequence 101010… would result in the same entropy as
a fully random, i.e., totally unordered, sequence. Therefore,
the conditional entropy is considered, accounting for the
memory (or the absence thereof) in the system. This is
defined as

HShðXjYÞ ¼
X
y

pðyÞHShðXjY ¼ yÞ

¼ −
X
y

pðyÞ
X
x

pðxjyÞlog2pðxjyÞ: ð3Þ

See the Supplemental Material [40] for details of our
calculation of the conditional entropy. We mention for
clarity that the events y and x are defined as “the ith bit is

0ð1Þ” and “the (iþ 1)th bit is 0ð1Þ.” Uppercase Y and X are
the unified sets of events on all bits. Thus, our notion of
entropy is linked to the frequency analysis of output data,
but can also be estimated a priori. Unlike the Shannon
entropy, the min entropy (denoted as H∞) is the most
conservative bound for the usable entropy of a randomness
generator. It maximizes the (conditional) probability pðxjyÞ
against x. This imbalance and maximizing effect can be
seen in Figs. 3(c) and 3(d). It becomes evident that, for a
larger sample size N, the width of the distribution shrinks
and the amount of entropy is commonly larger. The min
entropy is defined as

H∞ðXjYÞ ¼ −log2

�X
y

pðyÞmax
x

fpðxjyÞg
�
: ð4Þ

The above entropy definitions can be straightforwardly
computed for an experimentally generated data set. This
results in a scalar entropy value, which still has to be
interpreted; for a good generator, the resulting number will
usually be close to one. How “perfect” the entropy is and
how close it reaches to one depends on three factors: (a) the
quality of the generator, (b) the size of the analyzed bit
stream (here denoted as N for the number of analyzed bits),
and (c) which particular data set is analyzed. Conclusively,
it is very unlikely to achieve an entropy of unity when the
entropy for a finite bit string is computed. This even holds
for a fair coin. In the following, we perform an analysis of
the generator’s outcome and compute if the entropy
matches the predicted value.
Figure 4 shows the calculated Shannon and min entropy

for the presented data set against the sample size N. Note
that this graph shows the deviation against perfect entropy
on a logarithmic scale. For a smaller sample size N (left-
hand side), a larger number of samples exist, and more
points are depicted. As mentioned before, with a larger
sample size N, the entropy approaches unity. The condi-
tional Shannon entropy scales linearly with N, whereas the
min entropy is proportional to

ffiffiffiffi
N

p
. The value and the

distribution of the min entropy are significantly smaller
than for the Shannon entropy, since the conditional prob-
ability is maximized. Figure 4 also shows entropy bounds
which are obtained a priori. These include the second
highest possible value of the entropy for a certain sample
size, besides the ideal case of perfect entropy. This is the
highest value that can occur when a minimally entropy-
changing single bit flip is present in a data set of length N.
These curves scale quadratic against the mean slope
behavior, which we introduce above. Therefore, the mean
value for the conditional Shannon entropy forms a parallel
line to the highest min entropy, where one bit flip is present.
The min entropy is a conservative bound and selects the

maximal conditional probability in a set of random bits. If a
perfect random string is infinitely long, every possible
occurrence will show up in a subset of this sequence.
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Then, in contradiction to the description above, a set of
calculated entropies would eventually be very small since a
very long sequence of seemingly nonrandom bits can occur
(e.g., such as 1111111…). For these cases, the calculated
entropy may be reduced to zero. For realistic considerations
it is therefore important to exclude, for instance, such
infinitesimally likely events of all bits of a long sequence
being 1. Such a calculation of the occurrence of a certain set
of equivalent outcomes of a generator is presented in the
calculation of the coin tossing constants above (Table I).
Additionally, a possible error bound for randomness
extraction was introduced by Troyer and Renner [48] as
1=2100 ≈ 1=1030. Such bounds are also described to guar-
antee an “ϵ randomness” [43]. The proposed bound of
1=2100 ensures that 1 × 106 generators do not have the
option to exhibit the same outcome (i.e., a so-called
collision of two generators) in the age of the Universe.
In the case of Gaussian distributed events, this corresponds
to approximately 11.5 standard deviations from the center
of the distribution. Figure 4 shows this bound as the lowest
curve, obtained a priori by an error propagation on the
entropy of a fair coin, as outlined in the Supplemental
Material [40]. As suggested from the raw bit analysis, no
selected subset of the bits falls below this line—this
suggests that the model of a perfect coin toss seems to
be appropriate for the introduced generator.
For our presented sample size of 2.25 × 108, the condi-

tional min entropy per bit can be estimated as 99.95%.
This can be simply read from Fig. 4 on the right-hand side.

This value is, of course, solely limited by the finite sample
volume. The most conservative bound (11.5σ) of the
entropy difference to unity is approximately 1 order of
magnitude different, and the entropy amounts to 99.5%.
With the raw bits, as discussed above, but also by merit

of the calculated entropies, we are able to prove that the
recorded bit stream does not differ by any measurable
means from a perfect coin toss. Each emitted bit can
therefore be used as a random bit. No further randomness
extraction has to be considered when a large enough bit
string is used. Of course, we are only able to prove this
assumption bound to the size of the recorded bit string.

VI. CONCLUSION AND OUTLOOK

We present an unbiased all-optical coin toss. It is based
on the bistable outcome of an optical parametric oscillator
with nonlinear fiber feedback, operating in the P2 state. The
detection scheme relies on phase detection versus an
external reference pulse. This implementation is substan-
tially simpler than prior published experiments [20–22],
since it does not require degenerate operation of the OPO.
The disadvantage of degenerate operation is that it neces-
sitates either an actively interferometrically stabilized
resonator to fix the relative optical phases of the signal
and idler frequency combs to the pump frequency comb or a
“shaker”using a “dither and lock” algorithm that periodically
varies the cavity length to generate an error signal for the
stabilization. This introduces noise to the system which can
be avoided by a nondegenerate operation.
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FIG. 4. Final entropy in the generated bit stream. The difference of the entropy (H) to unity is shown for the Shannon entropy (blue)
and min entropy (red) against the sample size (N). A higher density and brighter color of the points obtained from experimental data
signifies more outcomes of a certain value. The best possible case is a difference of 0, as displayed after a cutoff of the logarithmic scale
on top of the graph. For N < 105, sequences possessing this “perfect” entropy are still observed, shown as separate points. If a specific
single bit is flipped, the entropy is reduced below unity. Subsequently, points in the graph that do not exhibit unity entropy cannot be
higher than a certain limit (dashed curve). This forms a forbidden area to the top with no mathematically possible outcome. The solid
straight line at the bottom indicates the conservative bound. These bounds are obtained a priori by an error propagation on the entropy of
a fair coin, as outlined in the Supplemental Material [40]. Red: 1σ deviation from the expected min entropy. Purple: Assuming an outlier
probability of 2−100. As expected, no values are found below this line.
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The implemented detection scheme, based on period
doubling, is ambiguity free, i.e., has only two possible
outcomes, separated by more than 400 standard deviations,
which can be interpreted as zeros and ones of a random bit
sequence. This uniquely decouples the fundamental ran-
domness process from the detection principle. While the
detection here is based on a lock-in amplifier, more simple
schemes can be developed. A demodulator or a radio-
frequency mixer and a comparator will reduce the imple-
mentation costs, and emit the random sequence directly
into an, e.g., logic level output.
One limitation is given by the sample rate of the chopper,

which is limited to 10 kHz in the presented design. This
sample rate is ultimately limited by the transient process
until the OPO is in a stable state and the required time for
phase detection. The measurement time to determine the
phase amounts to 1 μs with the current detection system.
This may be shortened in future experiments by a factor of
10. Accordingly, a faster chopper can be installed as well.
As evident in Fig. 2(c), we estimate the time for equili-
bration to approximately 300 ns and the ambiguity-free
detection of the phase state to 2–3 cycles, amounting to
100–150 ns. With the described OPO, and by introducing a
faster chopper, a random bit rate above 1 MHz can be
reached. An even further speed-up can be implemented
with a higher repetition rate of the pump laser. For such
changes, OPOs reaching the GHz range are reported [49].
As a side effect, this would result in a much more compact
design for the entire experimental configuration. Building a
more compact randomness generator could further be
realized by implementing the introduced principle with
state-of-the-art technology on a photonic chip [50–52].
The full quantum mechanical description of the open

quantum system, specifically in the P2 state, remains to be
addressed in future work. Commonly, the process of a
bistable outcome of an OPO is described as a quantum
process [22–28], growing from quantum mechanical vac-
uum fluctuations. A careful analysis on the transient
process, which may also introduce a fiber-optic electro-
optic modulator instead of a chopper, along with more
research on the power dependence will likely characterize
this process and the P2 state in further detail. A deeper
understanding of the underlying physics might lead to
faster phase detection and larger random bit rates, and even
to future implementations in quantum information process-
ing and quantum simulation [53].
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