

mode spacino

per mode

measurements

optica/

microwave

Ultra-low no.

Wetrology L

generat

• Turn-key GHz femtosecond taccor laser

1 GHz mode spacing

- Extension module for CEO frequency detection and stabilisation
- Repetition rate stabilisation via **TL-1000**
- Large mode spacing of 1 GHz

QUIOS

- High-power per mode (typ. 1 μ W)
- Stable and robust

Overview

To support applications of the **taccor** as a frequency comb, Laser Quantum has added the comb extension module to its successful range of 1 GHz lasers, now making the **taccor comb** available to the market. It consists of a matched dispersion compensation module, supercontinuum generation, and a nonlinear f-to-2f interferometer, all sealed in a compact housing which is attached to the turn-key femtosecond **taccor** laser system. The extension module consumes around 800 mW of the **taccor**'s output power so that up to 1 W can be made available for experiments via a dedicated exit port or can be further broadened to a supercontinuum spectrum using an optional second extension module.

In addition to the repetition rate RF signal at f_p, the **taccor comb** provides a long-term stable RF signal at the carrier-envelope offset (CEO) frequency f_{CEO} (Fig. 1) with more than 35 dB signal-to-noise ratio (Fig. 2). Feedback electronics to stabilise f_{R} and f_{CEO} are provided in the form of Laser Quantum's TL-1000 unit and the XPS800-E from our partner, Menlo Systems. The taccor comb provides the ideal solution for customers who seek to have a comb source with easy access to the visible and NIR spectral range at a high mode power level in a sealed, plug and play architecture. The high repetition rate of 1 GHz leads to a large mode spacing and high power per mode on the order of typically 1 µW after broadening (Fig. 3). The repetition rate of the taccor comb also enables generation of significantly more supercontinuum average power in a PCF compared to systems at 100 MHz (100 x more) or 250 MHz (16 x more) before significant coherence loss via nonlinear noise amplification is suffered (Fig. 4). This leads to a significantly enhanced signal to noise ratio for heterodyne beat measurements or direct frequency comb spectroscopy applications.

Click here to request a quotation

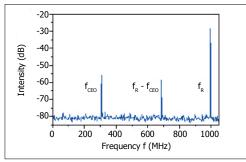


Fig. 1 RF output of the comb module (before amplification and filtering of $f_{_{\rm CEO}}).$

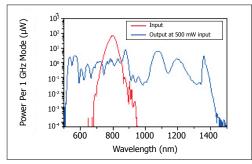


Fig. 3 Red: Typical taccor output spectrum used for CEO detection and comb applications. Blue: Output spectrum after 1 m photonic crystal fiber.

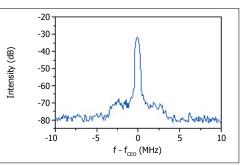


Fig. 2 Close-up of the unlocked f_{ceo} signal after amplification and filtering showing a SNR larger than 35 dB measured with a resolution bandwidth of 100 kHz.

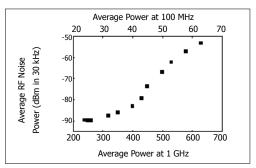
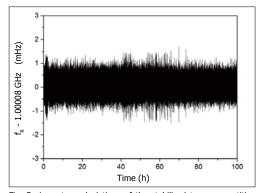



Fig. 4 Typical average RF noise in the CEO detection as function of power coupled through a PCF for supercontinuum generation for a 100 MHz laser (top scale) and a 1 GHz laser (bottom scale). Above a threshold pulse energy of around 30 pJ, nonlinear noise amplification quickly renders the PCF output incoherent, thus heavily favoring a 1 GHz system. Data taken from reference [1].

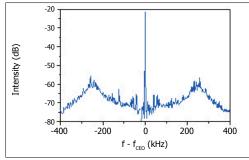
Turn-key design for stable performance

The extension module in the **taccor comb** preserves the long-term stability of the turnkey **taccor** laser. The system delivers a stable RF output at f_{CEO} over many days without realignment or signal loss. On a day-to-day basis the **taccor comb** is operated with minimal user interaction and a start-up time of <15 mins until locked in f_{R} and f_{CEO} . The long term stability of f_{R} and CEO beat lock are shown in Fig. 5a and 5b.

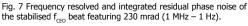
40

 $(T_{HW}) \xrightarrow{20}{} - 20 \xrightarrow{0}{} - 20 \xrightarrow{0}{}$

Fig. 5a Long term deviations of the stabilised **taccor** repetition rate over 100 h showing exceptional stability (limited by RF reference input).


Fig. 5b Long term deviations from the lock point of a CEO beat stabilised at 60 MHz over 100 h showing exceptional stability (limited by RF reference input). No realignment is required for continuous operation of the **taccor comb** over several days.

Carrier envelope phase stabilisation


The **finesse pure CEP** pump laser built within the **taccor** features our patented CEPLoQTM technology and allows direct modulation of the 532 nm pump light leading to a faster and more stable response than traditional methods, e.g. using an AOM. Thus, a very high feedback bandwidth can be applied to phase-lock the CEO frequency to an external reference (see Fig. 6).

Phase detection between the measured f_{CEO} and a given reference signal is performed and converted into a feedback signal to the finesse pure CEP input using the XPS800-E stabilisation unit (Menlo Systems). Tight locking of f_{CEO} with a large feedback bandwidth enables the **taccor comb** to show residual integrated phase error of 300 mrad or less (see Fig. 7).

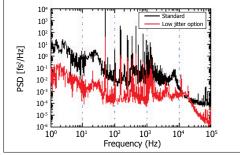

(periodic constraints) and the set of the s

Fig. 6 Close-up of the phase-locked $f_{\rm CEO}$. The data is acquired using a resolution bandwidth of 200 Hz. The servo bandwidth is about 250 kHz as indicated by the symmetrical peaks around the carrier.

Repetition rate stabilisation

Laser Quantum offers the timing stabilisation unit, **TL-1000**, as an accessory to the **taccor** series of high-speed femtosecond oscillators. The **TL-1000** allows the tight phase-lock of an oscillator's repetition rate to an external reference such as a synthesiser or another modelocked laser, with a residual timing jitter below 100 fs. A low timing jitter option is available that suppresses the timing jitter to typically below 10 fs (Fig. 8, 9 & 10). A suitable 10 GHz reference synthesiser must be provided by the customer. Stabilisation is performed at a higher repetition rate harmonic.

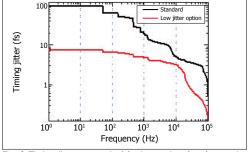
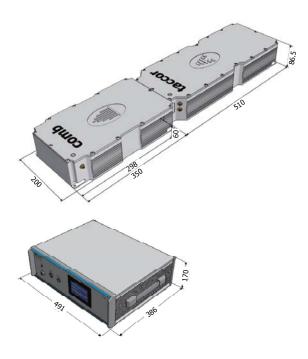


Fig. 8 Phase noise measurements of the **taccor** repetition rate f_R stabilised using the **TL-1000**. Black and red graphs correspond to stabilisation using the standard and low jitter configurations of the **TL-1000** unit.

Fig. 9 Timing jitter as acquired by integrating the phase noise from Fig. 8. Stabilisation at the $10^{\rm th}$ harmonic of $\rm f_{\rm R}$ leads to a sub-10 fs timing jitter.

Upgrades


The **taccor comb** can be upgraded by an additional extension module that can include one or two additional photonic crystal fibers for further broadening of the **taccor** laser output, e.g. if a specific supercontinuum spectrum is required for experiments.

Dimensions (mm)

Laser

Other information

Weight: 50 kg

Cooling system included f-to-2f interferometer included $f_{\rm CEO}$ lock electronics included

Drawings are for illustrative purposes only. Please contact Laser Quantum for complete engineer's drawings.

Specifications*

	power 8	power 10
Useable 800 nm power after $\mathbf{f}_{_{\text{CEO}}}$ stabilisation	600 mW	1000 mW
$f_{_{CEO}}$ beat signal-to-noise (in 100 kHz bandwidth)	>35 dB	
Repetition rate/comb spacing	1 GHz	
Tuneability of the comb mode position (@375 THz)	Up to 20 GHz	
Residual phase noise [1 Hz - 1 MHz]	Typ. 300 mrad	
Supercontinuum power per mode (typ.)*	100 nW to 1 µW	
Supercontinuum wavelength coverage (typ.)*	520 nm to 1200 nm	
Stability	5x10 ^{-13**} in 1 s, or <2x10 ^{-17***} in 1s	
Accuracy	Same as reference**, <8x10 ⁻²⁰ *** has been demonstrated [2]	

* With optional supercontinuum module. This option consumes the useable 800 nm power output not required for f_{cco} stabilisation.

** When $f_{\rm g}$ is locked to a RF reference. A suitable RF synthesizer must be provided by the customer. *** When $f_{\rm g}$ is locked to an optical reference. A suitable optical reference must be supplied by the customer.

References

[1] L. Hollberg et al., "Optical frequency standards and measurements", IEEE J. Quantum Electron. 37, 1502 (2001)

[2] L.-S. Ma et al., "Optical frequency synthesis and comparison with uncertainty at the 10⁻¹⁹ level", Science. 303, 1843 (2004)

LASER QUANTUM LTD

LASER QUANTUM INC

tel: +44 (0) 161 975 5300 email: info@laserquantum.com web: www.laserquantum.com

tel:

+1 408 510 0079 email: info@laserquantum.com web: www.laserquantum.com

LASER QUANTUM GmbH

tel: +49 7531 368371 email: info@laserquantum.com web: www.laserquantum.com VA4.0

TEL: 81-48-985-2720 FAX: 81-48-985-2721 info@pneum.co.jp 1706