taccor
ターンキ一操作GHzフェムトト秒しーザー
Laser
Quantum

- セルフロック機構とメンテナンスフリー
- 安定で頑丈な構造
- 完全ハンズオフのターンキ—システム
- 波長がチューナブル
- 励起レ—ザー内蔵

特徵

taccorは，1GHzまたは10GHzの繰り返し周波数で1．8Wまでの平均出力を有し，パルス幅は 15 fs まで短い，ユニークなターンキ一操作可能なフェムト秒レーザーで，波長選択性は 740 nm と 930 nm の間で可能です。

デザインは斬新で，レ—ザ一ヘッドは，コンパクトでハーメチックシールされ，振動を抑制した構造で，チタンサファイヤオシレータと励起レ—ザーを一体化しており，それにコントロール ユニットが加わります。コントロールユニットは，フィールドで交換可能な励起ダイオードを含み， レーザーヘッドから温度の影響を無くしています。レーザーの性能をモニターし，レーザーの診断分析を実行するインテリジェントなコントロールです。その結果taccorは，極めて高安定で再現性の高い製品で，長寿命低コストを可能にします。
taccorには5つのモデルがあります。 taccor oneは，選択可能な固定波長で，taccor powerと taccor ultraは，波長をチューニングし，最大の出力と最短のパルス幅が得られるようにでき ます。 taccor tuneは，波長がチューナブルなレーザ一で，タッチスクリーンとコントロール ソフトウエアでチューニング操作ができます。 taaccor x10は，10倍の高繰返し率で稼働します。

オプシヨン

繰り返し周波数とパルスタイミングのアクティブなロック
TL－1000周波数安定化ユニットは，レーザーの繰り返し周波数を外部の参照周波数に100fs以下のジッターでタイトにフェーズロックを掛ける。TL－1000－ASOPS周波数安定化ユニットは， 2台のGHzオシレータの繰り返し周波数に，2kHzから20kHzの間のオフセットロックを掛け，機械的な遅延ステージを設けることなくウルトラファースト時間領域分光分析を可能にします。

パルス列モニター
内蔵の高バンド幅 $(10 \mathrm{GHz}$ ）のフォトダイオードでレ—ザーの繰り返し周波数をモニターし，
TL－1000周波数安定化ユニットや，外部のエレクトロニクスに信号を送ることができます。
繰り返し周波数コントロール
高速／低速ピエゾ結晶上にマウントされてキャビティミラ一が繰り返しレートとアクティブフィード バックの制御を可能にし，高速フィードバックとドリフト制御も同時に可能にしています。
TL－1000ユニットと組み合わせることにより，繰り返しレートの精細クローズドループ安定機構 が得られます。

CEPLoQ™ テクノロジー
CEPLoQ ${ }^{\text {TM }}$ は，直接AOMを使用せずにフェーズ安定を維持するポンプパワーを調整する当社の特許技術です。これは従来の方法より速く，より安定した反応をもたらします。

taccorは，インターネット経由で励起レ—ザ一を制御するRemoteComソフトウエア を使用することができます。このソフトウエアを使って，当社のサービスチームに繋げることができレーザ一操作のモニタリングや，診断，最適化を施すことができます。

励起レーザー出カの変調

変調バンド幅が 100 kHz 以上，変調深度が $\pm 1 \%$ 以内の出力変調を，フィードバック目的で励起レ—ザーに施すことが可能です。

taccor one

taccor one は小型筐体で 740 nm から 920 nm の範囲から波長を選択することができ（選択後は固定），セルフモードロックで安定動作をします。1GHzの繰り返しレートで，taccor one は ＜60fs のパルス幅で平均出カ 1.6 W を超える発振をします。

図1 taccor oneの波長範囲を示す積み上げスペクトル

図2 taccor one で画像化された生体ネズミ神経細胞

taccor power

taccor power は，800nm 辺りでTi：Sapphire最大ゲインの1．8W まで最大可能出力を最適化 できます。

図3 taccor シリーズレーザーでの3Dビームプロフィール

図4 $f_{C E E}$ ビート， $\mathrm{f}_{\mathrm{CE} 5}$ ビートを伴う繰り返しレートの差周波数，
繰り返しレートを示すRF スペクトル
ノイズフロアはスペクトル分析機から発生

taccor x10

taccor の高い繰り返しレート（10GHz）バージョン。10GHz間隔のコムライン毎に 1 mW を与える ことで，taccor x10 はレ—ザ一市場で特有の存在となり，分解モ一ド分光，低ノイズマイクロ波発生，アストロコムや任意波形生成のような新しいアプリケーションの広い分野を開拓します。 taccor の他のバージョン同様，taccor x10 は同じく繰り返しレートの制御するように設定でき，変調アクセスによって励起出力がき搬送波オフセット周波数を容易に制御できるようになります。

図5 taccor（PDオプション）の高バンド幅繰り返し周波数測定 フォトダイオードからの信号のRFスペクトラム
ノイズフロアはスペクトラムアナライザーから発生

図6 Rb 細胞経由でtaccor x10 ビームを送り込んだ後の個別に分解
したコムモード
下の図では，1つのモ—ドが吸収ラインと共鳴している

taccor tune

taccor tune はタッチスクリーンやコントロールソフトウェアを使用して波長を選択することが できる完全ハンズフリーレーザーであり，740nm から 930 nm まで波長範囲をカバーする ユニークな製品です。

図7短波長taccor tune 用の出力調整力ーブ（taccor tuneの例 10）

図8長波長 taccor tune 用の出力調整カーブ（taccor tuneの例 10）

taccor ultra

taccor ultra は製品群の中で最短のパルス幅で発振します。1GHz の繰り返しレートと平均出カ 1．6W を出射し，パルス幅は 15fsが可能です。

図9 15fsパルスの放射を示すtaccor ultra の自己相関トレース

図10 taccor（PD オプション）での高いバンド幅繰り返しレート測定 photodiode からのシグナルの RF スペクトル
ノイズフロアはスペクトル分析機から発生

さらなる能力

taccor comb
taccor comb は f－to－2f干渉計モジュール，Menlo Systems社からのロック用電子装置および taccor powerまたはtaccor ultraで構成されます。taccor は繰り返しレートとキャリアーエンベ ロープオフセット周波数で完全に安定化されます。この設定でtaccor は強力な周波数コム エンジンとなり，1W超の安定コム平均出力を，中心波長800nm，15fs のパルス幅で分光学や距離測定アプリケーション用に発振します。800nm ビームは直接利用するか，あるいはより非線形性の高い段階まで応用度を高めて光学的周波数計測，ダイレクトコム分光，スペクトロ グラフ校正，デュアルコム線形分光，非線形分光やたの多くのアプリケーションを促進することも できます。

第二次高調波発生

A．P．E Angewandte Physik \＆Elektronik GmbH社との共同により，Laser Quantum社はtaccor powerと共用するHarmoniXX 第二次高調波周波数コンバーターを提供できます。 1 GHz 繰り返しレ—トの恩恵を維持しつつ， 250 mW までの周波数倍加出力を提供します。

プリチャープモジュール
光学式セットアップの群遅延分散（GDD）への注意深いコントロールは，フェムト秒レーザーを使用 する多くのアプリケーションが必要する結果を得るために非常に重要です。
Laser Quantum社製プリチャープ装置は，0～－8600fsでのGDD コントロールを行って，ユーザー が設定の正GDD への補償を容易にできるようにしたり，使用のポイントで正しいパルス特性を獲得することができるようにします。

これらのオプションの完全詳細については，専用データシートを参照してください。

寸法（mm）

他の情報

- ヘッドとコントローラ間のケーブル長 $2 m$
- ヘッド重量 15 kg
- 冷却システムを含む

寸法図は説明目的にのみ使用しております。詳細はお問合せください。

	taccor one	taccor power	taccor ultra	taccor tune	taccor $\mathbf{x 1 0}$
平均出力 ${ }^{1}$	one $4>700 \mathrm{~mW}$ one $6>900 \mathrm{~mW}$ one $8>1200 \mathrm{~mW}$ one $10>1600 \mathrm{~mW}$	power $4>800 \mathrm{~mW}$ power $6>1000 \mathrm{~mW}$ power $8>1400 \mathrm{~mW}$ power $10>1800 \mathrm{~mW}$	ultra $8>1200 \mathrm{~mW}$ ultra $10>1600 \mathrm{~mW}$	$\begin{aligned} \text { tune } 8 & >1500 \mathrm{~mW} \\ \text { tune } 10 & >1800 \mathrm{~mW} \end{aligned}$	＞1000 mW
中心波長	740 nm～ 920 nm	$\begin{gathered} \text { 標漼 } 800 \mathrm{~nm} \\ (\pm 20 \mathrm{~nm}) \end{gathered}$	$\begin{gathered} \text { 標漼 } 800 \mathrm{~nm} \\ (\pm 20 \mathrm{~nm}) \end{gathered}$	$\begin{gathered} 740 \mathrm{~nm} \underset{\text { (調整可能) }^{\sim}}{\sim} 930 \mathrm{~nm} \end{gathered}$	$\underset{(\pm 20 \mathrm{~nm})}{\text { 標漼 } 800 \mathrm{~nm}}$
パルス幅 ${ }^{4}$	＜60 fs	<30 fs	<15 fs	＜80 fs	＜50 fs
ビーム径（FWHM）	$\sim 15 \mathrm{~nm}$	＞23 nm	＞46 nm	$\sim 15 \mathrm{~nm}$	＞15 nm
繰り返し周波	1 GHz				10 GHz
パルスエネルギー	$0.7 \mathrm{~nJ} \sim 1.6 \mathrm{~nJ}$	$0.8 \mathrm{~nJ} \sim 1.8 \mathrm{~nJ}$	$1.2 \mathrm{~nJ} \sim 1.6 \mathrm{~nJ}$	$\begin{aligned} & 1.3 \mathrm{~nJ} \sim 1.8 \mathrm{~nJ} \\ & \text { taccor tune } 10 \\ & 1.05 \mathrm{~nJ} \sim 1.5 \mathrm{~nJ} \\ & \text { taccor tune } 8 \end{aligned}$	＞100 pJ
スペクトル幅	$\sim 0.8 \mathrm{~mm} \pm 0.3 \mathrm{~mm}$				$\sim 0.7 \mathrm{~mm} \pm 0.3 \mathrm{~mm}$
ビーム拡がり角	$\begin{gathered} 2.0 \mathrm{mrad} \pm 0.5 \\ \mathrm{mrad} \end{gathered}$				＜10 mrad
Mスクエア値	＜1．2（サジタル面）， ＜1．6（タンジェンシャル面）	く1．2（サジタル面）， ＜1．2（タンシェェシンカル面）	＜1．2（サジタル面）， ＜1．2（タンシェェンシャル面）	$\begin{aligned} & <1.2 \text { (サジタル面) } \\ & <1.6 \text { (タンショェンシャ面) } \end{aligned}$	$\begin{aligned} & <1.5 \text { (サジタル面), } \\ & \text { <1.5 (タンショェンシャル面) } \end{aligned}$
出力安定度 ${ }^{6}$	$\pm 1 \%$				
ノイズ（RMS）	＜0．1\％RMS				
偏光	＞100：1				
偏光方向	水平				
動作温度	$21^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$				
応用	2光子顕微鏡，2光子重合，光学精密計測，ASOPS，光学分光分析，ウルトラファスト分光分析，周波数コム発生				

＊LaserQuantum社は，継続的に性能改善プログラムを行っており，通達なしに仕様を改善することがあります。
${ }^{1}$ accor oneとtaccor powerは平均出力は800nmでの値で，波長が変わると出力は変わります。
2センター波長は，発注時に指定。指定値の $\pm 3 \mathrm{~nm}$ 。より詳細な設定も可能。
${ }^{3}$ 発注時に青領域（740～880nm）と赤領域（780～930nm）のどちらかの調整範囲を選択してください。
${ }^{4}$ オプションの外部キャビティ分散補償器が必要。
${ }^{5}$ taccor tune（調整範囲 $780 \sim 930 \mathrm{~nm}$ ）にて測定。 $780 \sim 930 \mathrm{~nm}$ のパルス幅は＜100fsで中心波長が $>920 \mathrm{~nm}$ の条件にて。
${ }^{6}$ 絽り返しLート：正碓性士 10 MHz ，taccor $\times 10$ の正碓性 $\pm 25 \mathrm{MHz}$ 。より正確性の高い数値についてはお問合せください。
1許容温度範囲内で，コールドスタートから8時間経過後測定。

LASER QUANTUM LTD
tel：\quad＋44（0） 1619755300
email：info＠laserquantum．com
web：www．laserquantum．com

LASER QUANTUM INC
tel：$\quad+14085100079$ email：info＠laserquantum．com web：www．laserquantum．com

LASER QUANTUM GmbH
tel：\quad＋49 7531368371
email：info＠laserquantum．com
web：www．laserquantum．com

