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SUMMARY
In classical cerebellar learning, Purkinje cells (PkCs) associate climbing fiber (CF) error signals with predictive
granule cells (GrCs) that were active just prior (�150 ms). The cerebellum also contributes to behaviors char-
acterized by longer timescales. To investigate how GrC-CF-PkC circuits might learn seconds-long predic-
tions, we imaged simultaneous GrC-CF activity over days of forelimb operant conditioning for delayed water
reward. As mice learned reward timing, numerous GrCs developed anticipatory activity ramping at different
rates until reward delivery, followed by widespread time-locked CF spiking. Relearning longer delays further
lengthened GrC activations. We computed CF-dependent GrC/PkC plasticity rules, demonstrating that
reward-evoked CF spikes sufficed to grade many GrC synapses by anticipatory timing. We predicted and
confirmed that PkCs could thereby continuously ramp across seconds-long intervals from movement to
reward. Learning thus leads to new GrC temporal bases linking predictors to remote CF reward signals—a
strategy well suited for learning to track the long intervals common in cognitive domains.
INTRODUCTION

The cerebellum is widely viewed as a structure for learning

predictions1–5 from inputs ranging from the body to neocor-

tical cognition centers.6–9 These diverse inputs propagate

through a uniform circuit (Figure 1A). Purkinje cells (PkCs)

receive input from �100,000 granule cells (GrCs)10 and

just one climbing fiber (CF). PkC computation depends on

integrating GrC inputs11,12 using synaptic strengths that can

be modified by CF instructive signals.13 Specifically, when a

PkC receives a CF spike, any GrC inputs active in the pre-

ceding �150 ms are weakened via long-term depression

(LTD).14–19 Similarly, reduced CF activity triggers long-term

potentiation (LTP) on coincidently active GrC inputs.20–22

Given the brief plasticity window to ‘‘sense’’ active GrCs, a

core cerebellar function is learning short-latency associations

between predictive events and CF ‘‘errors.’’23–27 Thus, de-

cades of theory have posited GrC representations of time,

or ‘‘basis sets,’’ as key to cerebellar learning.28–36 Yet, limited

available data suggest varied types of GrC representa-

tions.37–41 Instead of a single uniform GrC basis, an intriguing

alternative is that GrCs assume differing profiles to suit spe-

cific computational needs. In this scenario, understanding

cerebellar computations for different learned behaviors would
Neuro
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require characterizing the associated GrC bases and their

relationship to CF teaching signals.

Cognitive behaviors, including those with cerebellar contri-

butions,4,43,44 often require linking events separated by seconds

or more. Cerebellar computations in such contexts remain

obscure, and the associated GrC bases and their interplay with

CF teaching signals are uncharacterized. Due to technical diffi-

culty, GrC and CF inputs onto PkCs have yet to be simulta-

neously observed and related to learning.

Here, we recorded simultaneous GrC and CF activity using

dual-color two-depth two-photon Ca2+ imaging over days of op-

erant conditioning for delayed reward. Mice learned to lick in

anticipation of an expected reward—a behavior with cerebellar

contributions. Meanwhile, GrCs and CFs developed two key fea-

tures. First, after learning, numerous GrCs ramped activity up

and down at differing rates from forelimb movement until reward

1 s later; subsequent relearning of a 2-s delay further lengthened

GrC profiles commensurately over days. Second, the reward it-

self triggered widespread time-locked CF spiking that persisted

throughout learning. To understand the computations these

GrC-CF patterns subserve, we predicted GrC/PkC synaptic

changes based on canonical plasticity rules. Because many

GrCs developed activity that spanned the delay, CF-driven plas-

ticity near reward sufficed to grade numerous GrC/PkC
n 112, 2749–2764, August 21, 2024 Published by Elsevier Inc. 2749
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Figure 1. Two-color two-depth two-photon Ca2+ imaging of cerebellar GrCs and CFs

(A) Schematic of cerebellar microcircuit:�100,000 GrCs and one CF innervate each PkC, with GrC/PkC synapses adjusted by CF-dependent plasticity. GrC ‘‘i’’

synapses on PkCs ‘‘j’’ and ‘‘j+1’’ with weights Wi
j and Wi

j+1.

(B) Imaging schematic and histology. GrCs transgenically expressed GCaMP6f, whereas PkCs virally expressed R-CaMP2. PkC dendritic Ca2+ reports complex

spikes42 and thus CF activity. Through one objective, a 920 nm laser excited GCaMP in GrC somas, while a remotely focused 1,064 nm laser excited PkC

dendrites.

(C) Mice grasped a robotic manipulandum and self-initiated 8-mm-maximum forward pushes of at least 6–7 mm for water reward following a delay (main GrC-CF

data: 1.1 s; all other studies: 1 or 2 s). 2 s after reward time, the handle automatically returned over the following 2 s.

(D and E) Example in vivo mean two-photon simultaneous images of GrCs (D) and PkC dendrites (E).

(F and G) Example extracted GrCs (F) and PkC dendrites (G). Detected spatial filters of active cells are superposed in pale yellow or for 10 GrCs and PkC dendrites

in colors corresponding to the traces in (H) and (I).

(H and I) For 10 GrCs (H) and PkC dendrites (I), color matched to cells in (F) and (G), traces show time-varying fluorescence of each neuron. Stars show forelimb

movements and rewards. PkC dendritic spiking hereafter referred to as CFs. zsc, Z scores.
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weights by GrC activity timing throughout the delay. We there-

fore predicted that PkC spiking could adapt to track the interval

from forelimbmovement until reward up to 2-s later. PkC record-

ings confirmed such delay-spanning activity ramps. Thus, the

emergence during learning of new GrC bases, which link predic-

tive events to reward-evoked CF teaching signals seconds later,

permits long-timescale associations. This outlines a cerebellar

computation suited to learning neural ramps that track long inter-

vals common in cognitive domains.

RESULTS

Simultaneous GrC-CF recordings during reward-driven
learning
We sought to simultaneously record GrC and CF activity over

learning, which has previously been impossible. Due to tight

packing and small cell size, two-photon imaging is necessary
2750 Neuron 112, 2749–2764, August 21, 2024
to trackmammalian GrC populations.9,40,41 Two-photon imaging

can also record CF activity via PkC dendritic Ca2+, which reports

complex spikes.42 Thus, in principle, GrCs and CFs could simul-

taneously be imaged in a single color. However, because

�100,000 GrC axons physically intersect with each PkC

dendrite, it would be impossible to spatially disambiguate their

fluorescence in vivo. Instead, we leveraged spectral separation

via dual-color imaging.

Cerebellar areas related to cognition include lobules�VI–VIII.4

Lobule VI (LVI) communicates with multiple cognitive cir-

cuits,45–49 exhibits nonmotor signaling,9,41 and receives most in-

puts to its GrCs from pons,50 which relays neocortical informa-

tion. Although these features are common in the cerebellum, to

deeply characterize GrC-CF computation in one region, we

centered our imaging on LVI right vermis (ipsilateral to the reach-

ing forelimb). We transgenically expressed GCaMP6f in GrCs

(Math1-Cre/Ai93/ztTA41) and virally expressed R-CaMP251 in
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PkCs (AAV–L7-652-R-CaMP2) (Figures 1B and S1A histology),

whose dendritic Ca2+ reliably reports complex spikes and thus

CF input.42,53 Next, to simultaneously visualize both, we imaged

at two depths: a 920 nm laser illuminated GrC somas �150–

300 mm below the brain surface, and a remotely focused

1,064 nm laser illuminated PkC dendrites at a depth of �50 mm

(Figure 1B).

As animals learned an operant behavior (Figure 1C; details

below), we simultaneously monitored GrCs (143 ± 5 per session,

117 sessions in 20mice) and PkC dendrites (hereafter referred to

as CFs; 55 ± 2 PkC dendrites per session), either at 30 or 22.5 Hz

(example: Figures 1D and 1E; Video S1), over 7.5 ± 0.4 days

(Figures S1B–S1G). We extracted spatial locations (Figures 1F

and 1G) and time-varying fluorescence (Figures 1H and 1I) of

each neuron and further extracted spike times for CFs42 (STAR

Methods). Importantly, because we imaged GrCs directly below

the imaged PkC dendrites (field of view:�2353 235 mm2), axons

of these GrCs likely physically intersected most PkC dendrites,

and GrCs synapse onto �50% of the PkC dendrites they inter-

sect54 (Figures S1H and S1I). Thus, we visualized both input

streams—CF and some of the GrCs—to the same dozens of

PkCs over learning.

During imaging, water-restricted mice grasped a robotic arm

to self-initiate forward pushes (Figure 1C). Following successful

movement and a delay (main GrC-CF imaging dataset: 1.1 s,

all other studies: 1 or 2 s), animals received water reward. Delays

were thus far longer than classical cerebellar association time-

scales.55 Mice acclimated to the task for �1–3 sessions before

we started imaging (STAR Methods). Thus, ‘‘day 1’’ hereafter re-

fers to the first imaging session. After�1–2 imaging sessions, we

also withheld water on a random 20% of trials (‘‘omitted

reward’’). Mice learned the task over �1 week: (1) movement

duration decreased (Figure S2A), (2) execution rate increased

(Figures S2B–S2D), and (3) anticipatory licking increased

(Figure 2A).41,56

Mice learn the timing of delayed reward during operant
conditioning
We first tested whether mice learned reward timing. To distin-

guish the amount of anticipatory licking from its timing, we exam-

ined the temporal distribution of licks prior to reward in mice

trained on a 1.1-s delay (Figure 2B). Novice mice licked more

just after forelimb movement than just before reward, whereas

expert mice partly inverted this pattern (Figures 2C and S2E;

late vs. early preference: �0.13 ± 0.02 novice vs. +0.2 ± 0.01

expert; these and all subsequent quantifications mean ± SEM

across observations, see also Table S1). On omitted-reward tri-

als, experts reduced licking after the expected reward time

(Figures 2D and S2F; licking off-time, last time lick rate exceeded

70% of peak). Thus, mice learned to concentrate their licking

closer to the expected reward.

To assay reward timing learning directly, we tested whether

behavior adapted to delay duration. Mice trained on a 1-s delay,

and then retrained on a 2-s delay for another week (Figure 2E).

We examined licking on omitted-reward trials aligned to forelimb

movement, such that differences after t = 0 s could not be attrib-

uted to exogenous stimuli (Figures 2F and S2G; Video S2).

Whereas 1-s experts licked more shortly after forelimb move-
ment comparedwith after 2 s, 2-s-experts exhibited the opposite

pattern (Figure 2G). Moreover, when 1-s-experts initially

switched to the 2-s paradigm, their licking was diffuse across

the delay, consistent with timing uncertainty (Figures S2H and

S2I). Thus, mice adapted their peak licking to the respective

reward times (Figure 2H), demonstrating reward timing learning

over delays of 1 or 2 s.

Cerebellum contributes to the execution and learning of
expectation-driven licking
To test cerebellar contributions to this behavior, we implanted

windows over right LVI in PCP2-cre/Ai32 mice, which express

ChR2 in all PkCs.57–59 Activating inhibitory PkCs suppresses

the cerebellar nuclei (CN), thus reducing the circuit’s influence

on downstream brain regions. Mice trained for a week on the

1-s-delay operant task. In experts, on a random 20%–40%of tri-

als, we activated PkCs at 40 Hz for 0.8 s, triggered during the

delay period (200 ms after a 7-mm-reach-distance threshold;

STAR Methods). Stimulation largely abolished anticipatory

licking (Figures 2I and S2M; Video S3). After laser offset, reward

delivery triggered rapid recovery of licking (Figure 2I). However,

after laser offset on reward-omission trials, licking remained dis-

rupted throughout the trial (Figure 2J). First, mice recovered less

licking in the early post-omission period (Figures 2J and 2K).

Second, long after the omission of the expected reward, mice

exhibited aberrantly elevated licking (Figures 2J and 2K). Thus,

transient cerebellar perturbation imparted long-lasting distur-

bance to the amount and timing of expectancy-driven licking

but not reward-evoked licking.

We performed several further controls. First, to test whether

mice simply needed more recovery time after stimulation, we

repeated the experiment using briefer PkC stimulation early in

the delay on half of reward-omission trials. Nevertheless, recov-

ery of anticipatory licking remained weak and poorly timed (Fig-

ure S2J). We next repeated laser illumination in opsin-negative

mice (Figure S2K), and finally, we repeated PCP2/Ai32 stimula-

tion in a less relevant region (vermis lobule IX, Figure S2L)—

both without effect.

These data suggested that the cerebellum contributes to

expectation-driven licking, leading us next to test its involvement

in learning reward-timed licking. We retrained 1-s-expert PCP2/

Ai32 mice on a 2-s delay. 90% of trials were rewarded but also

laser-ON ([1.6, 2.2] s from movement); 10% of trials were

laser-OFF reward-omission ‘‘probe’’ trials (Figure 2L). Over

1-week of training, licking on probe laser-OFF reward-omission

trials never adapted to the 2-s reward time (Figures 2M and

2N). After 3–7 subsequent days of 100% laser-off training,

mice shifted their licking closer to 2 s. These results suggest

that the posterior cerebellar cortex contributes to the learning

and execution of licking driven by the expectation of upcoming

reward but do not exclude similar effects for other regions un-

tested in the present study.

GrCs ramp from movement until reward, which triggers
time-locked CF spiking
To examine GrC-CF task representations in 1.1-s-delay experts,

we computed average activity on rewarded trials (day 7+)

(Figures 3A and 3B). We noted numerous GrCs with sustained
Neuron 112, 2749–2764, August 21, 2024 2751
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Figure 2. Mice learn to elevate licking near the time of expected reward, with cerebellar contributions

(A) Lick rate before reward was higher on day 7+ than day 1 (334 day 1 trials from 10mice and 1,570 day 7+ trials from 20 sessions in 12mice; this and subsequent

gray regions denote delay period, and vertical lines denote movement and reward). Inset, p < 10�6.

(B) Distribution of licks across delay (400/9, 919/16, 1,820/21, and 2,065/22 trials/sessions).

(C) Novice mice licked earlier than late in the delay, whereas expert mice inverted this pattern ([late – early]/[late + early]; early: [�0.8, �0.6] s, late: [�0.2, 0] s.

p < 10�6).These and all subsequent centers denote means, and shaded regions and error bars denote SEM across observations (see also Table S1).

(D) Expert lick rate during rewarded and omitted-reward trials (1,570 and 495 trials from 20 sessions in 12 mice). Inset, last time (max 2 s) at which lick rate

exceeded 70% of the prior peak ([�0.25, 0.5] s; p < 10�6; 0 if licking never fell below 50% of peak).

(E–H) (E) Some mice trained with a 1-s delay followed by a 2-s delay. (F) Licking on omitted-reward trials for 1- vs. 2-s experts (283 1- and 519 2-s trials from 14

mice, 16 sessions each). (G) 2-s expert omission licking was higher after 2 s than early in the delay, whereas 1-s experts showed the opposite pattern (p < 10�6).

(H) Omission licking peaked near respective expected reward times (p < 10�6, peak over [0, 3] s).

(I–N) PCP2Cre/Ai32 PkC stimulation studies.

(I and J) PCP2Cre/Ai32 mice with windows over right cerebellum LVI trained on the 1-s-delay task. Starting 0.2 s after mice pushed >7mm, we activated ChR2 for

0.8 s on 20%–40% of trials (I, rewarded: 478 laser-off, 99 laser-on; J, omitted reward: 68 laser-off, 59 laser-on; 7 mice). Stimulation abolished anticipatory licking.

Reward triggered recovery of normal licking, but on omission trials licking remained weaker and less well timed (controls, Figures S2J–S2L). Pink: mean laser

period.

(K) Quantification of Figures 2I, 2J, and S2J–S2L. ‘‘DLick rate’’: each laser-on trial’s lickingminus themean laser-off licking, averaged from [0.35, 0.8] or [1.7, 2.1] s

from reward. Rewarded licking (Figure 2I) changed little in either window (p = 0.8 and 0.06; difference p = 0.1). Omission licking was reduced just after reward time

(p = 33 10�5 and <10�6 for long/Figure 2J and short/Figure S2J stim paradigms), but aberrantly elevated later (long stim: p = 33 10�5; brief-stim: p = 0.06; both

paradigms late vs. early: p < 10�6). Opsin-negative and LIX controls were not significant (bars p = 0.2, 0.4, 0.3, 1; differences p = 0.1, 0.7; laser-on omitted-reward

trial counts: 99, 59, 85, 39, and 34; mice/session counts: 7/9, 7/7, 3/3, and 3/3).

(L–N) PCP2-Ai32mice that were experts on the 1-s delay retrained with 2-s delay but with PkC stimulation on every rewarded trial from [1.6, 2.2] s frommovement

(90% of all trials, L). 10% of trials were laser-off reward-omission probe trials. Over 1 week of perturbed training—but evaluated on probe laser-OFF trials—mice

never learned to lick near the 2-s reward delivery time (M, grayscale curves). During subsequent laser-OFF training, mice learned to lick near 2-s (M, green; 85, 79,

99, 59, and 261 reward-omission trials per condition from 7 mice). (N) Dlick rate during expected reward time minus early delay (recovery > laser-on: p < 10�6;

laser-on across learning: p = 0.07).
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activity during the delay and many CFs that were active just after

the reward (Figures 3C and 3D). Quantitatively, cells active dur-

ing the delay comprised 34% ± 3% of GrCs but only 4% ± 1% of

CFs (Figure 3E). Conversely, cells that activated at reward

comprised 50% ± 5% of CFs but only 10% ± 1% of GrCs

(Figure 3F). A smaller 22% ± 5% of CFs activated at movement

(Figure S2P). In addition to CF spiking after reward, we

also observed modest but variable suppression of CFs prior

to reward (14% ± 4% of CFs, Figure 3F). Experts thus featu-

red widespread sustained GrC delay activity and CF reward

spiking.

Many GrCs and CFs appeared linked with anticipating and

receiving reward. To characterize these features, we identified

‘‘reward anticipation’’ GrCs with elevated delay activity

(Figures 3G, S2N, and S2O, 19% of GrCs, from 33/34 sessions

in 19/20 mice). Similarly, we identified CFs with reward spiking

(Figure 3H, 55% of CFs, from all 34 sessions/20 mice). This re-

vealed that, whereas GrC anticipation terminated after reward,

it was prolonged after unexpected reward omission (Figure 3I).

CF reward spiking was absent on omission trials (Figure 3J).

Instead, CF spiking rose later after reward omission, grossly

coinciding with the delayed off-time of GrC anticipation

(Figures 3K and 3L). To quantify, for each trial, we computed

the times after reward (or omission) when (1) CF spiking rose

and (2) GrC anticipation terminated; both increased significantly

on omitted-reward trials (Figure 3M). Thus, these GrC-CF phe-

nomena likely relate first to anticipation and then either reward

delivery or recognition of its omission.

Instead of signaling reward anticipation, could GrCs simply

signal licking? When animals awaited reward, both anticipatory

GrC signals and anticipatory licking ramped together. However,

GrC activity otherwise diverged from licking: (1) after reward de-

livery, GrC anticipation terminated (Figure S3A; decay time

0.19 s post-reward)—yet, licking further increased to its highest

values (Figure S3A; decay time 1.1 s post-reward); (2) compared

with rewarded trials, following reward omission, GrC anticipation

was substantially more prolonged (Figure S3B; signals extended

by 130%)—yet, licking was substantially weaker and more brief

(Figure S3B; 37% less licking). Finally, anticipatory GrCs were

not modulated by individual lick onsets (Figures S3C and S3D).

We also did not observe selective delay period body, eye, or

whisker movements consistent with anticipatory GrC temporal

profiles (Figures S3J–S3Q). Thus, anticipatory GrC signals

were most consistent with a temporally building expectation of

reward.
Figure 3. Reward-anticipating GrC activity followed by reward-evoked
(A–D) Each row shows the fluorescence (GrCs, A and C) or spike rate (CFs, B and

rewarded trials (3,965 GrCs, 1,964 CFs, 34 sessions/20 mice). Cells sorted by tim

activity (D). Red lines denote sorting quantification windows.

(E and F) Activity quantifications either during delay (E) or post-reward (F), shown a

exceeding ± 0.2 Z scores [zsc]). *p < 10�6. ns, p = 0.54.

(G–J) Rasters of anticipatory GrCs (G and I) and reward-activated CFs (H and J) on

spread across 33/34 expert sessions in 19/20 mice; >0.1 zsc comparing [�0.3, –

expert sessions/20 mice; spike rate during [0, 0.2] s > 0.1 zsc, and > 0.1 zsc hig

(K and L) For neurons in (G)–(J), averages across trials and cells. Gray lines show

(M) Dots show mean across trials of GrC anticipatory off-time (x axis, when fluor

spiking (y axis, when average rose above 20th percentile of the reward response [

trials with elevated CF reward spiking (117 ± 6 trials per session). Inset, average
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Overall, we found that reward anticipation (1) followed forelimb

movement and modest CF spiking, (2) rose with sustained GrC

activation, and (3) terminated at reward (or omission) when

GrC anticipation decayed, and many CFs spiked. This hinted

that many expert GrCs spanned the delay from movement until

reward-evoked CF spiking. Thus, we next examined whether

this was linked to learning reward timing.

Learning increases GrC reward anticipation but leaves
reward-evoked CF spiking unchanged
To test whether GrC reward anticipation and CF reward spiking

changed with learning, we imaged repeatedly as novice mice

learned the 1.1-s delay (15 mice, 7.5 ± 0.4 sessions per mouse,

Figures S1D and S1E). We examined reward anticipation GrCs

on days 1 and 7+ (Figure 4A, spread across all day-1 sessions/

mice and 33/34 day-7+ sessions from 19/20 mice). The magni-

tude of GrC anticipation grew, and its prevalence increased

moderately (Figure 4C). Thus, learning enhanced sustained

GrC delay activity.

We next considered CF reward signals. In leading theories,

CFs signal errors that drive GrC/PkC plasticity, which reduces

future errors.60 Both behavioral and GrC signatures of reward

anticipation improved with learning (Figures 2A–2C, 4A, and

4C). Thus, if reward-evoked CF spikes signaled prediction er-

rors, such spiking should decrease after learning. To quantify

this, we identified CFs activated by reward (Figure 4B; spread

across all days 1 and 7+ sessions). We found that after learning,

reward-evoked CF spiking marginally increased in magnitude

and remained equally prevalent (Figure 4D), contrary to an er-

ror.61 CF anticipatory suppression magnitudes and prevalence

also increased (Figure S2Q). As an alternative to errors, CF

reward spiking could mark the end of the expectation period

spanned by anticipatory GrC activity.

Learning lengthens GrC profiles to span the delay until
reward
To directly test whether operant learning lengthenedGrC profiles

to span the delay, a cohort of mice was trained with a 1-s delay

for a week and then retrained with a 2-s delay (Figure 4E). We

examined GrC-CF profiles at three points: expert 1-s delay per-

formance (Figure 4F), just after switching to the 2-s delay (Fig-

ure 4G), and expert 2-s delay performance (Figure 4H). In 1-s ex-

perts, most anticipatory GrCs were active mainly during [0, 1] s

after forelimb movement, which was similar in 2-s-delay-

novices (Figures 4I–4L black/brown). After a week of 2-s training,
CF spiking in expert mice
D) of a single neuron, aligned to reward delivery and averaged across expert

e of peak activity (A and B) or magnitude of anticipatory (C) or reward-evoked

s histograms and (insets) binary statistical categories (p < 0.05 and magnitude

rewarded (G and H) or omitted-reward trials (I and J 20%omissions). 762 GrCs

0.03] s with both [�1.3, –1] and [+0.3, +0.5] s; 1,094 CFs spread across all 34

her than pre-reward [�0.3, –0.03] s. See also Figures S2N and S2O.

times of first CF peaks following reward delivery and omission, respectively.

escence fell to <50% of peak over [�0.5, 0] s), vs. time of first population CF

0, 0.2] s). From sessions contributing to (G)–(J), 33/34 sessions, 19/20 mice, on

across sessions (p = 1.6 3 10�6 for both, 33 sessions).
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Figure 4. With behavioral learning, GrCs increasingly spanned the delay, whereas CFs persistently signaled reward

(A and B) Average across GrCs with elevated delay-period activity (A, [�0.3, –0.03] > [�1.5, –1.3] and > [0.3, 0.5] s), on day 1 vs. day 7+ sessions. (B) Average

across CFs with elevated reward spiking (from [0, 0.2] s). Cell/session/mouse counts: (A) day 1: 752/15/15, day 7+: 1,135/33/19; (B) day 1: 657/15/15, day 7+:

1,462/34/20.

(C and D)With learning, GrC anticipation increased inmagnitude (C, p < 10�6, 752/1,135 day 1/7+GrCs) and in prevalence (p = 0.02, 33/15 day 1/7+ sessions). CF

reward responses increased in magnitude modestly (D, p = 4 3 10�4, 657/1,462 day 1/7+ CFs) and remained equally prevalent (p = 0.56, 15/34 day 1/7+

sessions). Significance proportions: thresholded magnitude differences from (A) and (B) at 0.2 zsc and single-cell p < 0.05; total #cells: 839/1,964 day 1/7+ CFs;

2,334/3,965 day 1/7+ GrCs. Dots show sessions.

(E) A cohort of mice trained for a week on the 1-s delay task, before switching to a 2-s delay for another week.

(F–H) 1-to-2-s retraining GrC responses in five mice. GrCs in each image are sorted by center of time points with elevated activity during [0, 2] s, relative to pre-

movement levels [�0.8, �0.3] s. Cell/sessions counts: 257/5, 263/5, and 523/6. 2-s-novice data averaged over first 50 trials to highlight earliest exposures; 1-s-

expert and 2-s-expert averages over random 50-trial subsets. Color-bar applies to all panels.

(I and J) Duration of GrC elevated activity between [0, 2] s, relative to pre-movement levels [�1, 0] s was significantly higher in 2-s-experts (p < 10�6; 257, 263, and

523 GrCs, respectively).

(K) The proportion of GrCs with elevated activity for >1.6 s during [0, 2] s rose with learning (p = 0.02, dots show 5/5/6 sessions, respectively).

(L) Average activity of reward anticipation GrCs (criteria: activity higher in final 0.3 s before reward compared with early in the delay [0.1, 0.4] s; n = 89/257, 105/

263, and 247/523 GrCs per learning phase). Dashed pink lines denote 1- or 2-s reward.

(M) Average activity of reward-responding CFs (rate [0, 0.2] s >0.1 zsc higher than [�0.3, �0.03] ms. 17/61, 34/71, and 35/143 CFs per condition).
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elevated GrC activity largely spanned [0, 2] s following forelimb

movement (Figures 4I–4L turquoise; elevated activity sustained

for�50% longer, from 0.8 ± 0.04 s to 1.2 ± 0.03 s). Thus, learning

lengthened the duration of many individual GrCs’ activity ramps.

In addition, GrC differences between 1-s and 2-s delays were

again inconsistent with licking motor signals per se: during

[1, 2] s after movement, when 1-s experts licked robustly to

consume reward, 2-s-experts licked less, as they delayed antic-

ipatory licking—opposite to the differences in GrC activation

(Figures S3E–S3I). Consistent with 1s-delay data (Figure 4B),

2-s novices and experts both exhibited strong CF reward re-

sponses (Figure 4M). Thus, over days of training, GrC anticipa-

tory profiles lengthened to span the delay between reaching

and reward, which evoked persistent time-locked CF spiking.

We hypothesized that lengthening GrC profiles to span the delay

might help CF-guided GrC readout in PkCs.

Learning increases reward timing information in GrC
populations
After learning, many GrCs developed activity that spanned the

delay, but for what computational purpose? Because animals

successfully learned reward timing (Figure 2), we tested the qual-

ity of GrC reward time information via single-trial population

linear time decoding (Figures 5A–5C; 10-fold cross-validated

predictions). Learning substantially increased GrC delay-time

decoding (by 133%; Figures 5D and 5E). Did time decoding

generically improve, e.g., due to more consistent GrC activity?

To test this, we decoded time after reward consumption and

found persistently low accuracy (Figure 5F); by contrast, time de-

coding during reward consumption was alreadymaximally accu-

rate in novices (Figure S4A). Similarly, when comparing 1- and

2-s paradigms, we found that 2-s expert GrCs were best able

to decode 2-s of time passage, whereas 1-s decoding was

more similar across conditions (Figures S4B–S4F). Thus,

learning specifically enhanced GrC timing accuracy during the

learned delay.

Learning generated new GrC temporal bases that enhanced

population reward timing information. Prior data demonstrated

that PkCs62,63 and CN cells64 ramp in ways that may track delay

periods. Howmight PkCs appropriately integrate numerous GrC

inputs to readout their population timing signals?

LTD simulated on anticipatory GrC bases predicts a
gradient of GrC-PkC synaptic changes
Learning yielded GrCs with increasing reward timing informa-

tion—could this information be extracted by PkCs? Among

many other factors,65–68 a major contributor to PkC output is

the integration of GrC inputs, partly directed byCF-driven synap-

tic plasticity. Classical cerebellar LTD weakens GrC/PkC syn-

apses for GrCs that were active in the �150 ms preceding a CF

spike (for vermis18) (Figure 5G). We thus aimed to use the first

simultaneous GrC-CF recordings to predict GrC/PkC LTD.

We recorded both the CF input and up to several hundred GrC

inputs for several dozen PkCs. Therefore, for each PkC, we pre-

dicted LTD for each GrC input (simplifying by assuming that

every GrC innervated every PkC). For each reward-evoked CF

spike, we tabulated each GrC’s mean activity in the preceding

plasticity window as a prediction of LTD (Figure 5H). We rectified
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these quantities to include only activity above baseline. We then

computed the mean LTD for each GrC onto each PkC over all tri-

als. To maintain overall PkC input strength, as likely achieved

biologically by homeostatic69 and opposing20,70 processes,

such as LTP, we normalized the range of this vector (STAR

Methods). Finally, we also computed the mean LTD across

PkCs for each GrC, yielding a per session prediction of GrC/

PkC synaptic weights.

To visually compare GrC profiles with their predicted LTD, we

sorted GrCs by LTD onto the average PkC. Surprisingly, this or-

dered GrCs by delay activity timing—even when peak activity

long preceded the LTD window (Figures 5I and S4G–S4I). To

quantify this effect, we described each GrC by the center of its

delay activity. We scattered this ‘‘anticipatory center time’’

against predicted LTD (Figures 5J and S4J–S4L). The two quan-

tities were correlated and most strongly in experts—even for

‘‘center times’’ long preceding the LTD window (Figures 5K

and S4O). As a control, this effect was absent when computing

LTD using randomly reordered GrC traces (Figure 5K, gray).

Thus, reward LTD is sensitive to GrC timing across the preceding

delay.

This result reflects specific GrC properties in our task: activity

levels in the 150 ms LTD window near reward provided a

powerful snapshot of GrC activity timing up to 2 s prior. To

visualize, we examined activity of GrCs grouped by predicted

LTD magnitude (Figure 5L, normalized in magnitude to

highlight differences in timing). Indeed, progressively lower-

LTD GrC groups exhibited progressively earlier delay activity

ramps—even as these ramps shifted hundreds of ms before

the LTD window. However, these differences collapsed after

reward.

Although this strategy is mathematically effective for the 1.1-s

delay, the basis in Figure 5L would be ineffective for 2-s delays.

We thus tested generalization to a longer delay by computing

LTD on our 2-s-delay expert data. This revealed a GrC basis

analogous to that in 1.1-s-experts but ‘‘stretched’’ in time

(Figures 5M, S4M, and S4N). This demonstrates that learning a

longer delay yielded a new GrC basis more suited to tracking

the longer interval when guided by a similar but more temporally

remote reward-evoked CF teaching signal.

Thus, we find that because learning yielded numerous GrCs

that ramped activity up and down at different rates from forelimb

movement until reward (Figure 3G), GrCs’ activity at reward pro-

vided a snapshot of their prior temporal profiles—even for GrCs

that peaked up to 2-s earlier (Figures 5M and S4O). Thus, CF-

driven GrC integration might enable PkCs to track delay

passage.

LTD from CF spiking at reward computationally suffices
to readout GrC timing information
If LTD is sensitive to GrC anticipatory timing, what computation

could this facilitate in PkCs? We produced a minimal readout by

summing GrCs weighted by the LTD weight vectors (Figure 6A),

thereby predicting a possible component of PkC output

(Figures 6B and S5A–S5C). The resulting weighted sums of

GrCs correlated substantially with time through the delay and

increasingly so as learning progressed (Figures 6D, S5I, and

S5J). In experts, LTD-weighted GrC sums resembled optimal
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Figure 5. Learning yields GrC reward timing information that is computationally accessible to LTD
(A–C) Linear regression (A, least squares, 10-fold cross-validated) to decode time to reward via weighted sum of GrCs ([�1.1, 0] s). Example decoding per-

formance day 1 (B) and day 7 (C) (41 trials, 127 and 111 cells).

(D) GrC time decoding output averaged across all trials (1,047, 2,242, 4,355, and 4,708 trials from 20 mice).

(E and F) GrC delay-time decoding accuracy (E) averaged across sessions (p = 1.4 3 10�5. Dots show 15, 25, 40, and 37 sessions). Accuracy post-reward

(F, [1, 2] s) was persistently low (p = 0.1) and substantially poorer than anticipatory decoding in experts (p < 10�6). See also Figures S4A–S4D.

(G) CF-dependent GrC/PkC plasticity rule. When a PkC (j) receives a CF spike, GrC inputs active in the prior �150 ms are weakened (LTD, top two GrCs), but

other GrC inputs are not (bottom GrC).

(H) Simulating LTD on CF-GrC data. Example CF and GrCs in three trials centered on reward and concatenated (black lines denote trial breaks). Orange dots

denote CF spikes within [0, 250] ms of reward. Each GrC’s activity in green LTD window ([�150, 25] ms from CF spike) was tabulated as predicted LTD between

that GrC and the CF-recipient PkC. A logistic function bounded each LTD event between [0, 1] ( 1
1+e�F=s; F = avg GrC signal in LTD window; s = 95th percentile

fluorescence per cell, STAR Methods).

(I) Example session: GrC profiles sorted top to bottom by predicted LTD averaged over trials roughly ordered GrCs by time of peak activity during the delay

(70 GrCs, 95 trials). Additional examples, Figures S4G–S4I.

(J) For session in (I), correlation between each GrC’s center of delay activity (x axis, over [�1.1, 0] s) vs. its predicted LTD magnitude (y axis; 70 GrCs, r = 0.82,

p < 10�6, diagonal line, linear fit). Additional examples: Figures S4J–S4L.

(K) Correlation from (J) across sessions grew with learning (magenta; p < 10�6. Dots show 116 sessions; days 7+ positive r at p < 10�6, 37 expert sessions). LTD

computed on time-shuffled GrC data had smaller correlations (p < 10�6, 37 expert sessions). See also Figure S4O.

(L) GrCs grouped by predicted LTD magnitude (percentiles computed for each session; percentile bin edges: [0, 20, 40, 50, 60, 70, 80, 90, 95, and 100]). Traces:

average activity per GrC group (normalized to [0, 1] to highlight differences in timing). Cell counts from bottom to top: 2,077, 2,068, 1,025, 1,057, 1,032, 1,036,

1,038, 517, and 522; 76 day 4+ sessions. See Figures S4M and S4N.

(M) Same as (L), for 2-s experts (bin edges: [0, 30, 50, 65, 80, 90, 95, and 100]; counts: 157, 103, 80, 78, 53, 26, and 26; 6 sessions).
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Figure 6. Simulated LTD-weighted GrC averages track time to reward for up to 2 s

(A–C) GrC readout using LTD predictions of GrC/PkC weights (A). Example day-7 single-trial LTD-weighted GrC sums (B) or simple GrC average (C). Corre-

lation: time vs. weighted sums (40 trials shown of 68 total, 111 GrCs). Normalization: range of trial-average scaled to [1.1, 0]. Additional examples,

Figures S5A–S5C.

(D) Correlation between time and LTD-weighted GrC sums rose with learning (p = 1.6 3 10�5, dots show 116 sessions from 20 mice). Simple GrC average or

averages using randomly reordered LTD weights (random weights) poorly correlated with time (weaker than LTD weighted, p < 10�6).

(E) In experts, GrC sums using LTD weights were far closer to optimal time decoding than those using random weights, simple averages, or weights from LTD

computed on time-shuffled GrCs (*p < 10�6, dots show 37 sessions).

(F) For 1-to-2-s retraining data, LTD-weighted GrC sums using CF reward spikes (i.e., either 1- or 2-s-post-movement). Trial counts: 250, 250, and 299; mice/

sessions: 5/5, 5/5, and 5/6.

(G) LTD-weighted GrC sum timing accuracy (R2) over [0, 2] s for data in (F) (p < 10�6, 799 trials).

(H) Session-by-session behavioral performance (late [�0.2, 0] s minus early [�0.8, �0.6] s delay licking) vs. LTD-weighted GrC sum timing accuracy. Spearman

r = 0.81, p < 10�6, 62 sessions. Diagonal line, linear fit.
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GrC time readouts in both accuracy and weights (Figures S5A–

S5G and S5I–S5L). Thus, learning led to GrC activity patterns

that were increasingly well suited to LTD-based readout of delay

passage until reward.

Given the prevalence and prominence of GrC anticipation sig-

nals in experts (Figures 3 and 4), might far-simpler GrC readouts

suffice to extract timing information? We considered three trivial

readouts: (1) simple average of all GrCs (Figure 6C), (2) GrCs

weighted randomly (by reordering the above LTD weights), or

(3) LTD simulated on time-shuffled GrCs. In each case, resulting

GrC readouts only weakly correlated with time in experts

(Figures 6D and 6E). Thus, although learning enhanced GrC

timing signals, this information could not be extracted trivially.

Therefore, PkCs cannot automatically inherit timing signals, but

setting synaptic strengths via LTD (with likely symmetric contri-

butions from LTP, Figure S5K) sufficed to integrate GrCs into in-

terval-tracking signals.

Are LTD-weighted GrC sums specific to the delay duration?

We computed LTD on data from mice trained on a 1-s delay fol-

lowed by retraining on a 2-s delay (Figure 6F). This yielded three

results: (1) in 1-s-delay experts, GrC sums tracked time from

[0, 1] s, but the readout decayed from [1, 2] s; (2) in 2-s-delay nov-

ices, GrC sums tracked time from [0, 1] s but then saturated from
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[1, 2] s; and (3) only in 2-s experts did GrC sums track time

throughout [0, 2] s. Accuracy of 2-s timing thus improved sub-

stantially (Figure 6G). LTD triggered near reward could therefore

extract at least 2 s of GrC timing signals—but only after learning

appropriately lengthens GrC activity patterns to span the delay.

Finally, to test whether readout quality related to behavior, we

quantified lick timing specificity, which covaried with timing ac-

curacy of LTD-weighted GrC sums (Figures 6H and S5H).

Together, these data demonstrate that learning endows GrCs

with anticipatory timing signals that could be integrated into a

delay-tracking output via classical plasticity driven by reward-

evoked CF spiking.

PkC delay spiking ramps bear out predictions of LTD
readout of GrC timing signals
To test the prediction that a component of PkC simple spiking

(SS) could track time to reward, we used Neuropixels (imec) to

record PkCs in 1-s-delay experts (Figures S6A and S6B). We

identified confirmed PkC SS units by their SS pauses after com-

plex spikes (64 cells, Figures S6C–S6G) and putative PkCs

based on their physical proximity ( ± 100 mm) to confirmed

PkCs71 and similar spiking metrics (98 cells, Figures S6H–S6J

and S7E). We computed mean SS rates aligned to reward in
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Figure 7. PkC simple spike ramps track interval from movement to expected reward for up to 2 s

(A and B) Neuropixels PkC recordings. (A) Example expert PkC simple spike (SS) rate ramped downward during the delay (124 trials). (B) Average Z-scored SS

rate of PkCs whose delay SS rate decreased below baseline (negative slope [�1, 0] s and negative zsc [�150, –25] ms; 32%, 51/162 PkCs in 4 mice/16 day 7+

sessions; positive ramping cells in Figure S7).

(C–E) Alternatively, we imaged PkC two-photon somatic Ca2+ in the region of our GrC-CF recordings, (C, mean in vivo image). (D) Trial-averaged fluorescence for

PkCs with negative slope from [0, 1] s for 1-s-expert data (65/4/2 total PkCs/sessions/mice) or [0, 2] s for 2-s-expert data (65/3/2 total PkCs/sessions/mice).

Timing accuracy [0, 2] s was higher in 2-s-expert PkCs (E, p < 10�6).

(F) Schematic. Left, a canonical strategy using a ‘‘delay line’’ GrC basis: erroneous actions trigger CF spiking. GrCs sequentially activate at distinct times for short

durations. Learning adjusts synapses of GrCs temporally coincident with CF signal, eliminating both future error and CF error signal.

Right, strategy to produce PkC delay-tracking ramps from action to reward. CFs signal reward. During learning, GrC profiles lengthen to densely span the delay

with varying kinetics. Pre-reward LTD window provides snapshot of GrC ramping kinetics (similar to Figures 5L and 5M). Using classical LTD, CF reward spiking

grades many GrC/PkC synapses by GrC anticipatory timing. LTD-weighted GrCs yield PkC spiking ramps from predictor to reward. Thus, new GrC basis sets

that emerge with learning enable new types of PkC computation.
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experts (Figure S7A). In both individual PkCs (Figure 7A) and

among 32% of all PkCs (Figure 7B), SS rates gradually

decreased with delay passage, as predicted (Figure 6B). Inter-

estingly, an additional 25% of PkCs exhibited positive ramping

SS, which tracked the delay with polarity opposite to our predic-

tion (Figure S7B, discussion). SS rates of many PkCs thus

tracked the delay as predicted by the readout of the GrC tempo-

ral basis.

Due to cerebellar and Neuropixels probe geometry, our elec-

trophysiological recordings spanned multiple lobules and were

more ventral than our dorsal-surface imaging sites (Figure S6A),

such that few, if any, PkC recordings likely derived from the small

region where we performed GrC-CF imaging. As an alternative,

we used two-photon imaging to densely sample PkCs in dor-

sal-surface right vermis LVI. By monitoring Ca2+ in PkC somas

with jGCaMP8f,72 we obtained correlates of PkC SS rates73 (Fig-

ure 7C). Most PkCs exhibited downward delay ramping of so-

matic fluorescence (Figures 7D and S7F). Quantified by fluores-

cence correlation with time or its magnitude near reward, �80%

of PkCs negatively rampedwith delay passage (Figures S7G and

S7H), as predicted by GrC-CF signals in the same region.

To test the prediction that learning generates PkC ramps to

span the learned delay duration (Figures 6F and 6G), we re-

trained PkC somatic imaging mice on a 2-s delay. As predicted

and unlike 1-s experts, 2-s-expert PkC fluorescence progres-
sively decreased through the 2-s delay and returned to baseline

after reward (Figure 7D, green). Thus, only 2-s-expert PkCs

conveyed 2 s of timing information (Figures 7E and S7I). The dif-

ferences in PkC activity between 1-s vs. 2-s experts were un-

likely to be explained by licking because PkCs exhibited large

differences between 1-s and 2-s delays during [1, 2] s after

movement that qualitatively conflicted with corresponding differ-

ences in licking (Figures S3F and S3G). Overall, PkC recordings

bore out multiple predictions of LTD-based readout of delay-

ramping GrCs. Because many PkCs tracked the delay until

reward (Figures 7A–7E) and because trivial GrC readouts cannot

produce such signals (Figures 6D and 6E), it is thus likely that

GrC integration via LTD and/or computationally similar mecha-

nisms, such as LTP (Figure S5K), contribute to delay-tracking

PkC SS ramps.

DISCUSSION

Using simultaneous GrC-CF imaging during operant condition-

ing for delayed reward, we found that learning yielded numerous

GrCs that ramped activity for up to 2 s from forelimb movement

until reward; reward then triggered widespread time-locked CF

spiking (Figures 3 and 4). Via simulation, we found that canonical

LTD applied to this GrC temporal basis could grade GrC/PkC

synaptic weights by GrC anticipatory timing (Figure 5). We thus
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predicted and confirmed that many PkCs could generate inter-

val-tracking SS ramps from movement until reward (Figures 6

and 7). Newly learnedGrC bases were also specific to behavioral

timescale: GrCs in 1-s-experts were ill suited to 2-s interval

tracking, but 2-s-delay retraining stretched GrC profiles to

span the longer delay (Figures 4, 5, and S4). This process

mirrored behavioral learning (Figures 2 and S2) and accounted

for PkC ramp differences between 1-s and 2-s delays (Figures 7

and S7). Given the behavioral importance of long-interval-

tracking, ubiquitous neural ramping in the forebrain and its

importance for perceived time passage,74,75 and the recent find-

ings of cerebellar PkC and CN neural ramps,62–64,76,77 these GrC

temporal bases and their interplay with CF reward signals may

be common elements of cerebellar computation.

Learning yields GrCs that link predictors to temporally
remote CF reward signals
Decades of theory posited GrC representations of time,28–36

such as the ‘‘delay line’’ GrC basis26 (Figure 7F, left). Contrast-

ingly, in our expert data, up to 40% of GrCs simultaneously acti-

vated for up to 2 s until reward (Figure 7F, right). Because

different anticipatory GrCs activated with different kinetics,

each GrC’s activity level just before reward provided a snapshot

of its prior temporal profile (Figures 5L and 5M). Rather than

redundancy, dense GrC activity more finely sampled the delay.

By sustaining activity from movement until reward, GrCs that

activated early were linked to reward-evoked CF spiking much

later. Thus, GrCs in our data are well suited to generate inter-

val-spanning ramps via a remote CF instructive signal, whereas

a delay line basis will generally not (Figures 7F, left, and S5M–

S5P). Because these GrC bases scaled temporally across delay

durations (Figure 4), it is possible that this basis might also

‘‘compress’’ to shorter durations and thus help drive anticipatory

PkC suppression in classical cerebellar short-latency associa-

tive learning.78,79

Our central finding is that learning yielded new GrC activity

profiles that rose and fell over seconds to link a predictor to

temporally remote reward-evoked CF teaching signals. This

claim is agnostic to the mechanism for GrC alterations. Never-

theless, sustained activity ramps often reflect recurrent excit-

atory circuits,80,81 as found in the cortico-cerebellar loop and

the nucleocortical loop, and the latter exhibits structural plas-

ticity that could help amplify specific mossy fiber input patterns

to GrCs.82

Persistent CF reward signals
Canonically, CFs were thought to signal errors, such that

learning eliminates both error and CF error signal. Often, CF rep-

resentations are more complex.61,83–86 Here, reward-evoked CF

spiking persisted throughout learning, contrary to an error (Fig-

ure 4). We posit two possible explanations for this result. First,

expert CF spiking could help transition or initiate subsequent

behavioral states, in this case, from reward anticipation to con-

sumption. Intriguingly, other studies have also reported behav-

iorally time-locked CF spiking that either emerged, solidified,

or persisted during learning, with stronger expert CF spiking

sometimes associated with better performance.42,60,79,83 Sec-

ond, expert CF reward spiking could help to continually refine
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GrC integration. In contrast to a sparse GrC basis where persis-

tent CFs might excessively weaken target GrCs relative to those

active just outside the LTD window (Figure 7F, left), we predict

that CF reward spiking grades many GrC/PkC synapses at

once (Figure 7F, right). If paired with homeostatic or opposing

mechanisms20,69 to maintain overall PkC input strength, this

strategy could yield stable synaptic weights and learning.

Impact of delay-spanning GrCs on PkCs
Recent studies found extended ramping in PkCs62,63,76 and

CN64,77 neurons, raising the question whether ramps were ‘‘in-

herited’’ from upstream or could result from cerebellar computa-

tion. PkCs in our task also ramped over seconds-long delays

(Figures 7 and S7). But our GrC-CF recordings permitted two

key discoveries: (1) interval-tracking PkCs cannot be generated

by trivial GrC readout (Figures 6C–6E), despite widespread sus-

tained GrC activity, but (2) LTD from CF reward spiking compu-

tationally sufficed to integrate diverse GrCs into seconds-long-

interval-tracking PkC ramps (Figure 6F). We thus posit that

learning involves both progressive changes to GrC activity and

changes in its readout in PkCs. An open question is whether

these changes occur together or sequentially (Figure S5H).

A limitation of our technique is that we sampled GrC inputs

physically closest to CF-recipient PkCs, but GrCs contribute

from distances up to �1 mm.87 Although GrC profiles in our

task varied minimally at this spatial scale,9,41 we cannot

exclude differential roles for distant GrC inputs. Furthermore,

our simulation assumed the classical plasticity rule in which

CF spikes lead to GrC/PkC LTD, but our data do not provide

direct evidence that CF reward spikes cause LTD. Nonetheless,

although LTD is modulated by factors unobserved in this study,

it is generally thought that most CF spikes lead to some LTD.88

In addition, although we predicted GrC/PkC connection

strengths, no technique can yet quantify connection strengths

among hundreds of cells registered to their activity during

learning. Instead, we tested and confirmed predictions about

PkC ramping. Although many PkCs bore out predicted delay

ramps, in our electrophysiological recordings, some also

ramped upward—unexplainable by LTD alone but consistent

with prior findings of bidirectional PkC modulation.22 Such

PkC features could reflect numerous synergistic mechanisms:

the balance of LTD vs. LTP (triggered by reduced CF

spiking20–22; Figure S5K); interplay of GrCs and interneurons,

which could contribute to PkC ramping by driving SS below

baseline (Figure 7); lasting rises in PkC Ca2+89; and changes

in PkC excitability.69 On the other hand, upward-ramping

PkCs were rare when imaging near the site of our GrC-CF re-

cordings (Figures 7D, 7E, and S7F–S7I). Functionally, all ramps

may help track intervals between events.

Function of ramping GrC bases and delay-tracking PkCs
The cerebellum has long been thought to synchronize actions to

a short latency prior to an event90 (Figure 7F, left). Increasing

data suggest that the cerebellum may also contribute to contin-

uous timing functions where ramping signals predomi-

nate.62–64,76,77 In our data, cerebellar delay ramping resembled

a temporally building expectation of reward (Figure S3). Never-

theless, our data cannot adjudicate whether the cerebellum
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generates such ramps (1) solely when needed to drive temporally

building licking when awaiting reward or (2) also to help maintain

internal estimates of time passage generally. We favor (2)

because PkCs ramp in differing behavioral contexts and cere-

bellar regions64,77,91; cerebellar ramps are tightly linked to those

in neocortex,9,64,91 which have generalized temporal expectancy

functions92–94; and the diversity of CN targets95,96 implies

broader utility than driving a fixed set of motor effectors.

How might such signals influence behavior? Activating PkCs

during the delay transiently terminated licking, potentially by in-

hibiting CN cells projecting to areas driving motor output. The

transient manipulation also disrupted subsequent lick timing

relative to expected reward (Figures 2J, and S2J), possibly by

disturbing internal estimates of time passage. Finally, repeatedly

perturbing PkC activity prevented the relearning of new reward

timing even when probed on laser-off trials (Figure 2M), possibly

by disrupting signals used for temporal learning. However, it is

important to note that this perturbation disrupted spontaneous

PkC spiking in addition to GrC-driven spiking, leaving the possi-

bility that direct GrC perturbation might yield a different constel-

lation of effects.

Long-interval time tracking via ramping signals is supported

by decades of forebrain studies, indicating its importance for

both estimation and perception of time in multiple species.74,75

For the cerebellum, we demonstrate that learning leads to new

sustained GrC bases that link a predictor to distant reward-

evoked CF teaching signals—a strategy well suited to learning

to track long time intervals. Cerebellar learning of interval-

tracking ramps may characterize its interactions with the fore-

brain and contributions in cognitive domains generally.
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, MarkWag-

ner (mark.wagner@nih.gov).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data will be deposited at Dryad at the time of publication (https://doi.org/10.5061/dryad.bk3j9kdm6).

d Source code will be deposited at GitHub at the time of publication (https://github.com/wagnerlabnih/garcia-garcia-

neuron-2024).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL DETAILS

Mice
All GrC-CF imaging experiments used Math1-Cre / Ai93 (TIGRE-LSL-TRE-GCaMP6f) / ztTA (R26-CAG-LSL-tTA) mice, aged 6 –

16 weeks, which, in the cerebellum, express GCaMP6f selectively in GrCs.41 Optogenetics experiments used double transgenic

crosses of PCP2-Cre101 mice to Ai32 mice102 (Jackson labs), while electrophysiology and PkC somatic imaging used WT mice.

All procedures were approved by both the NIH and Stanford animal care and use committees.

METHOD DETAILS

Virus
An abridged PkC-specific promoter (L7–6)52 drove expression of the red Ca2+ indicator R-CaMP2,51 packaged into AAV–L7-6–R-

CaMP2. PkC imaging used AAV-ef1A-jGCaMP8f virus. Virus injected at �1012 genomes/mL.

Viral injection
Mice were anesthetized via isoflurane (�2% in �1L/min of O2). We cleaned the scalp and removed hair. We made a sagittal inci-

sion in the skin to expose the underlying skull, which we then lightly scraped free of soft tissue. We drilled a �300 mm hole over the

vermis of Lobule VI (�0 to 0.3 mm right of midline, on the post-lambda suture). We inserted a �25 mm diameter-tip glass capillary

�300 mm below the pial surface and injected 500 nL of AAV-L7-6-R-CaMP2 (or jGCaMP8f for PkC surgeries) into the tissue and

waited 5 minutes after injection before withdrawing the tip. Virus was typically allowed to express for 10 to 14 days prior to

imaging.

Histology
Mice were deeply anesthetized via IP injection of 5% tribromoethanol in PBS, and then transcardially perfused with PBS followed by

10% formalin, after which the brain was removed and left overnight in 10% formalin. We cut 60 mm sagittal sections from the cere-

bellum using a vibratome (Leica VT 1000S). The sections were then washed in PBS.

For GrC-CF histology, we performed immunostaining first by 1h of blocking in 10% FBS in PBST. We dual-stained the sections

using chicken anti-GFP (Aves Labs, GFP-1010) and rabbit anti-RFP antibodies (AB-62341) for �48h, followed by a 0.1% PBST

wash, followed by Alexa 488 anti-chicken (A-11039) and Alexa 594 anti-rabbit (A-32754) secondary antibody stainings for�3 h. After

mounting the sections, we imaged the resulting slides using a confocal microscope with 488 nm and 561 nm lasers (Zeiss LSM 510).

For PkC Neuropixels histology, we directly mounted the sagittal sections in DAPI mounting medium and imaged using the 405nm

and 531nm lasers.
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Window and headplate implantation
Implantation followed viral injection. We removed a patch of skin with a mediolateral span from ear to ear, and a rostrocaudal span

from the back of the ears to the eyes. We scraped the entire exposed skull surface free of soft tissue, and then used VetBond (3M)

adhesive to seal the edge of the skin incision to the skull. We drilled a�3.5 to 4 mm diameter cranial window centered over the right

vermis of lobule VI. We then affixed a #0 or #1 3mmdiameter glass cover slip onto a 3mmouter diameter, 1 mm height, 2.7 mm inner

diameter steel ring, using UV curing optical adhesive (Thorlabs NOA 81). We stereotaxically inserted the glass-ring combination into

the cranial window at a 20�–25� angle counter-clockwise from the sagittal axis and a 40�–45� degree azimuthal angle from the vertical

axis. We depressed the glass to a depth below the average depth of the underside of the skull at the window perimeter. We then

sealed the outer face of the steel ring to the skull using Metabond (Parkell).

We then implanted a custom headplate with a 5mmcentral opening and two extensionswith two holes for screws to affix the head-

plate to fixation bars. We stereotaxically lowered the headplate, surface parallel to the glass window, onto the skull with the central

opening centered on the window, and then covered the entire exposed skull with Metabond up to the top surface of the headplate.

Behavioral data collection
As described previously,56 our operant device was a two-axis robotic manipulandum consisting of two DC motors, two high-reso-

lution optical rotary encoders, and a 4-linkage two-degree-of-freedom manipulandum configuration. The manipulandum was

controlled via a custom programmed nested series of feedback loops across a field-programmable gate array (FPGA), PC with

real-time LinuxOS, andWindows PC (together forming theNational Instruments cRIO platform). In addition to handling real-time con-

trol tasks, the apparatus recorded the x and y position of the handle of themanipulandum at 200 Hz. We also synchronously acquired

at 200 Hz: a readout of the solenoid trigger that released water reward; the frame counter from the two-photon microscope; in some

cases, a capacitive lick sensor reading; and in some cases, the optogenetic laser trigger pulses. Reward delivery was triggered either

via windows PC (the main GrC-CF 1.1-s-delay dataset), or directly in the Real-Time OS (all other datasets: 1-s-to-2-s learning data;

PCP2-Cre/Ai32 ChR2 data; Neuropixels recordings; PkC somatic imaging). The latter eliminated roughly�100ms of delay variability;

the resulting data was qualitatively similar between methodologies.

In addition, in some cases, we collected behavioral video data at 30 – 120 Hz (Imaging Source). This was synchronized to the mi-

croscopy data either by hardware frame trigger or by automatically identifying the frames on which the IR laser shutters opened and

closed. Finally, we used DeepLabCut100 to semi-automatically annotate 2D locations of the mouse’s two forepaws, nose, tongue,

eye pupil, or whiskers.

For somemice, we obtained capacitive sensor lick readings (26mice total; main dataset: 12mice; PCP2-Cre/Ai32 ChR2 dataset: 7

mice; 1-s-vs-2-s imaging dataset: 5 mice; PkC somatic Ca2+ imaging dataset: 2 mice). Capacitance measurements were sensitive to

gross changes in positioning or degree of contact, such that the sensor sometimes became ‘stuck’ in the ‘on’ state. We automatically

excluded from licking analysis any trials in which the sensor was ‘‘high’’ for more than 90% of any continuous 1.5-s block of time. For

the remaining trials, we computed lick rate by identifying lick onset events in the raw binary sensor contact traces. Finally, we filtered

the binary traces to produce smoothly-varying rate signals.

Behavioral training
During active behavioral training, mice were water restricted to 1mL per day, weighed daily for excess weight loss, andmonitored for

signs of lethargy, coat deterioration, hunching, and general distress. Mice obtained water until satiety during behavioral training and

received remaining water up to the 1 mL dosage in the home cage.

Reaching tasks employed our custom two axis robotic manipulandum.56 The linear reaching task had the following structure.

Mice self-initiated trials by pushing the handle of the robotic arm. Trials were terminated when either of two conditions were

met: (1) animals reached the 8 mm virtual ‘‘wall’’ where the robot immediately terminated movement; or (2) animals ceased

pushing the handle at any distance >3 mm for more than 100 ms. Following a delay after the end of a successful (>6-7 mm)

movement, the computer dispensed (via a gravity-fed reservoir through a solenoid valve) a water droplet from a gavage needle

in front of the animal’s mouth. The main GrC-CF imaging dataset had a 1.1-s-delay; for all other datasets including optogenetics,

1-s-to-2-s behavioral and imaging studies, Neuropixels recordings, and PkC somatic imaging, delays were either 1-s or 2-s as

indicated. Following an additional �2 s delay, the robotic arm automatically returned to the animal to self-initiate the subse-

quent trial.

Mice underwent typically 1 to 3 days of pretraining during which we did not perform imaging, until animals reached �50 trials

in 30 minutes. The function of pretraining was to minimize sessions in which animal brains were exposed to laser light without

producing any behavioral imaging data. After this, we imaged during all subsequent training sessions for �1 week, returning to

the same field of view each day. After the week of chronic imaging, we sometimes imaged distinct imaging fields for 1 to 3 addi-

tional days.

Two-photon microscopy
We used a custom two-photon microscope with a resonant-galvo x-y scanhead (Cambridge Technology. Galvo, 6215H; resonant,

either CRS 8k or CRS 12k). The brain was illuminated by two lasers, one at 920 nm for GCaMP6f (typical power:�60mW), and one at

1064 nm for R-CaMP2 (typical power: �40 mW). In some cases, 920 nm was provided by a fixed wavelength 920 nm laser (Spark
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Alcor 920 2W), while in other cases it was provided by a tunable Ti:Sapph (Spectra Physics MaiTai). 1064 nm illumination was pro-

vided by a fixed wavelength laser (Spark Alcor 1064 2W). The 1064 nm laser path passed through an electrically tunable lens (Opto-

tune, either EL-10-30-CI-NIR-LD-MV or EL-16-40-CI-NIR-LD-MV), in some cases with an additional offset lens (75 mm, 125 mm, or

150 mm focal length). The emission path split red and green onto two PMTs.

The main dataset was acquired using a 40x magnification 0.8 numerical aperture (NA) objective (Olympus XLUMPlan). The image

size was 512 x 512 pixels over a field of view of 234 x 234 mm. In some cases (those using the CRS 12kHz scanner), the 1064 nm (red)

and 920 nm (green) data were acquired via alternating frames by alternately shuttering the two lasers, resulting in an effective frame

rate of 22.5 Hz. In other cases (those using the CRS 8 kHz), the two channels were acquired simultaneously at 30 Hz.

To select a field of view, we began by locating the region of cerebellum with viral expression of R-CaMP2 in PkCs. From this

restricted region, we then optimized for the region with the best joint SNR in both GrCs and PkCs. We then optimized GrC imaging

depth using the objective z-piezo, and finally optimized the PkC dendrite imaging depth using the Optotune remote focusing

adjustment.

In cases of chronic imaging, following the first day of two-photon imaging, we used the wide field camera image to move to the

nearest major vasculature landmark, collected an image of the landmark, and recorded the distance from our chosen imaging field

to the landmark via the X-Y-Z sample translation stage distances. To return to the same imaging field on subsequent days, we in-

verted this procedure by finding the landmark and moving the recorded distances to the imaging field. We also recorded the final

Optotune remote focusing offset for the 1064 nm laser. We then fine-tuned the GrC imaging field by comparing the image to the

mean image from the first day of chronic imaging, ensuring that landmark GrCs from the initial session were present in the daily field

at several locations in the imaging frame.

PkC somatic Ca2+ imaging and analysis using jGCaMP8f
We followed the surgical preparation described for GrC-CF imaging, with the only difference being the injection of AAV1-EF1A-

jGCaMP8f. After 10 days, we examined the mice under the two-photon using a Nikon 16x 0.8 NA objective, and localized the

PkC layer, picking imaging fields with the greatest number of infected PkC bodies.

Optogenetic studies
We crossed PCP2-Cre101 mice to Ai32 mice102 to generate PCP2/Ai32 double transgenics and implanted cerebellar windows as

described above. After a week of training, we acquired perturbation data in expert mice. We positioned a ferrule-terminated multi-

mode optical fiber (200um core, 0.39 NA, Thorlabs MR83L01) �1 mm above the glass centered on Lobule VI. A 488 nm laser

(Coherent OBIS LX) delivered 5-15mW (measured in CWat fiber tip) via a Fiberport (Thorlabs PAF2-7A). On interleaved laser-on trials,

the robotic controller waited for the mouse’s voluntary movement initiation and, when the handle crossed a 6-7 mm distance

threshold, the FPGA waited a fixed period before delivering a fixed number of 5-ms TTL pulses with 15 ms interval to the OBIS mod-

ulation input. The following table summarizes parameters for each experiment:
Experiment

Laser-on

(mean %)

Laser-on,

mean % of

rewarded

Laser-on, % of

omitted

Laser-on time

(s from reward)

Laser-off time

(s from reward) Number of pulses

Figures 2I and 2J 22 17 50 -0.83±0.006 -0.05±0.006 36±0.3

Figure S2J 10 0 50 -0.94±0.004 -0.58±0.003 15±0.06

Figure S2K 34 31 50 -1.1±0.01 0.88±0.02 61±0.4

Figure S2L 17 8 50 -0.8±0.002 -0.02±0.002 32

Figures 2M and 2N 90 100 0 1.66±0.003 (from reach) 2.25±0.003 (from reach) 25
As we did not mask the blue light, for blue light controls, we used opsin-negative transgenic imaging mice with cerebellar windows

and performed the same procedure. For LIX controls, we exposed LIX beneath the soft tissue in the neck and positioned the fiber

behind the cerebellum.

Neuropixels recordings
Under anesthesia as above, mice were implanted with a headplate. Mice were water restricted and trained for 1 to 2 days before

initial recordings. The day before recording, we opened a <1 mm craniotomy in the same location used for imaging, and then

covered the hole with Kwik-Cast (WPI). The following day, immediately before recording, we pierced a small hole in the dura

with a needle. We then inserted the Neuropixels probe stereotaxically and under visual control, directly through lobule VI from

behind the animal, using an azimuthal angular range of 79-84 degrees, and a mediolateral angular range of 0–15 degrees. We var-

ied the angle across recording days to avoid piercing the same tissue multiple times. We inserted roughly 2 mm, to reach the

anterior end of the cerebellum, and thus passing primarily through Lobule VI and V. After confirming likely passage through
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multiple PkC layers as viewed in real-time in spikeGLX, we allowed the tissue to settle for 5 to 10 minutes, before initiating a

recording session during behavioral training for 18 minutes. We programmed our NI cRIO behavioral apparatus to output synchro-

nization pulses to the Neuropixels NI DAQ. For the final two recording sessions for each animal, we coated the electrode in DiD for

histological track visualization.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image processing
Green and red channels were independently motion-corrected using a sequence of rigid followed by nonrigid NORMCORRE regis-

tration,103 as we empirically found that brain motion at the molecular layer differed from that at the GrC layer. To correct for slow,

full-frame changes in fluorescence that did not correspond to cellular activity, we fit a double exponential to the frame-averaged fluo-

rescence across the entire movie. For each frame, we then divided every pixel by the exponential fit value for that frame, and then

manually confirmed that the resulting frame-averaged fluorescence trace was roughly flat across the recording.

Cell identification and signal preprocessing
To identify the spatial locations of GrCs, we used a pipeline based on cNMF.104We initially used cNMF to identify candidate GrCs.We

automatically discarded candidates whose central regions were too small (<�0.0005mm2) or too large (>�0.003mm2). We then

manually discarded candidates in cases where either (1) the spatial filter clearly did not correspond to GrC somas, or (2) where no

clear elevation of fluorescence was observed in the video at the spatial location of the cell filter during high points in the cNMF signal

trace. We then manually annotated the movie for ‘‘missed’’ cells and ‘‘seeded’’ a second round of cNMF with these additional can-

didates and then repeated the above steps.

To identify the spatial locations of PkC dendrites, we used a pipeline based on PCA/ICA.53 We again automatically discarded can-

didates based on size as above.

In some cases, we then applied a convolutional neural network classifier to automatically discard additional candidates whose

spatial filters clearly did not correspond to Purkinje dendrites We built our neural network with 15 layers: one image input layer,

two repeats of a convolution-batch normalization-ReLU-average pooling layers sequence, a convolution-batch normalization-

ReLU layers sequence, and a fully connected-soft max-classification layers sequence. We trained the classifier over eight epochs

and shuffled the training data before each.We used an L2 regularization factor of 0.01, an initial learning rate of 0.001with a piecewise

learning rate schedule, and a mini batch size of 32. We trained this neural network on 7,400 previously sorted PkC dendrite spatial

filters from five mice, across 74 sessions. The training set consisted of 4,213 (56.93%) images that visibly contained PkC dendrite

spatial filters (class 1) and 3,187 (43.07%) images that did not (class 0). The final neural network had an accuracy of about 90%.

We then discarded the candidates that were not classified as PkC dendrite spatial filters and manually inspected those remaining.

In addition, we manually split spatial filters that clearly contained more than one PkC dendrite. Finally, we automatically searched for

possible duplicate dendrites or candidate pieces of split dendrites to be merged, and manually removed identified duplicates and

manually merged identified split dendrites.

For both GrCs and PkC dendrites, we then back applied the final set of spatial filters to the preprocessed movies, to yield the initial

cell activity traces. For each cell, we next removed signal drifts on timescales slower than neural activity by subtracting off a 10th

percentile filtered version of the signal (GrCs: 10 s moving window; PkC dendrites: 5 s).

Finally, we uniformly scaled the signal magnitudes across cells by normalizing the amplitude of their baseline (noise) fluctuations

(initial signal magnitudes were ambiguous due to: lack of meaningful physical units; differences between cells in SNR & indicator

expression levels; changes in SNR or brightnesswithin a session; ambiguous impact of spatial filter pixel weighting). For each neuron,

we first estimated the center of the noise distribution, by computing a (slow) moving median (GrCs: 2-minute window; PkC dendrites:

1-minute window), but we excluded any timepoints above the cell’s 99th percentile value, which were Ca2+ transients. For each cell,

we subtracted off this estimate to center the noise distributions on zero. Next, we determined the noise fluctuation magnitude, by

computing a slow moving windowed standard deviation on all fluorescence values below zero (excluding the top half of the distri-

bution removes neural activation transients). This corresponded to the lower half-normal distribution of fluorescence noise fluctua-

tions.We divided each cell’s trace by the estimated noise standard deviation s

ffiffiffiffiffiffiffiffiffiffiffi
1� 2

p

q
. Overall, this produced signals where zero was

defined as the center of the noise distribution, and the noise standard deviation was normalized across cells to unity magnitude, i.e.,

z-scored.

Since PkC dendritic calcium transients reflect complex spikes42 and thus individual CF spikes, we also estimated the time of in-

dividual CF spikes. We deconvolved out the indicator kinetics (t = 150ms) from the activity trace and thresholded the resulting signal

(1.9 s.d.) to identify individual transient times.When further producing single-trial spike rates, we filtered the binary event traces with a

200 ms kernel.

PkC somatic Ca2+ imaging analysis
We again used cNMF to identify active PkC bodies. During manual curation, we accepted candidates that, in addition to having the

expected size and shape, clearly exhibited elevated fluorescence in the z-scored movie during their nominally ‘‘brightest’’ frames.
Neuron 112, 2749–2764.e1–e7, August 21, 2024 e5



ll
OPEN ACCESS Article
Finally, since it was typically impossible to restrict the entire imaging field to the exact depth of the PkC layer, we often observed some

contamination from PkC dendritic signals (complex spikes). We therefore manually excluded any detected PkC somas that exhibited

many fast transients with the visual appearance of dendritic complex spikes (i.e., a single transient that decays in�200 ms), as these

were excessively contaminated by dendritic fluorescence. The resulting remaining signals were passed through the same postpro-

cessing pipeline described in the previous section for GrCs.

Neural response analysis
For trial-aligned analyses, we began by identifying all reaching movements from the manipulandum position data. To align trials, we

sequentially identified: the time of reward delivery; reach ‘‘end’’ and ‘‘midpoint’’ as the times when the y position first extended to

within 0.5 mm of its maximal value or beyond 4 mm respectively; reach ‘‘start’’ as the time when a (100 ms-window-smoothed) ve-

locity estimate fell to below 15 mm / s, prior to the midpoint. To restrict analysis to stereotyped trials, we identified reaches >7 mm in

length. When analysis of the main dataset required simultaneous alignment to reward and reaching, we concatenated the reach-

aligned and reward-aligned neural data such that movement midpoint uniformly occurred at -1.1 s relative to reward.

Neural learning analysis
Our main dataset consisted of 20 mice. Of these, in 15 we imaged across multiple days of learning, aiming for 7 days of repeated

imaging of the same neurons, followed by an additional 1 to 3 days of imaging distinct fields of cells to sample more neurons. On

average we obtained 7.2+/-0.1 repeated imaging days in these 15 mice. Across all 20 mice, we obtained expert imaging data

from, on average, 1.7+/-0.1 distinct fields of view.

For analyses in which the relevant N values were unique cells (e.g., Figure 3), all included sessions were taken from distinct fields of

view (no repeats).

For analyses in which the relevant N values were unique sessions (e.g., Figures 5D–5F), we included all sessions.

Temporal decoding analysis
We used a 10-fold cross-validated linear regression (ordinary least squares) analysis to determine the accuracy of GrC temporal de-

coding. For each session, we first produced amatrix of size NGrC-by-T-by-NT, where NGrC was the number of GrCs, T was the number

of imaging frames corresponding to 1.1 second, and NT was the number of rewarded trials. We concatenated all trials along the time

axis to produce a matrix of size (NT x T)-by-NGrC. We then produced a ‘‘target’’ temporal axis vector of length T, whose entries ran

from -1.1 s to 0 s (to span the delay), and then repeated this vector NT times to produce a target vector of size (TxNT)-by-1. From the

cross-validated linear regression results, we retained the cross-validated prediction of the temporal axis for each trial and computed

the resulting accuracy (R2) and mean absolute error in ms. For post-reward temporal decoding, we repeated the identical procedure

on 1 s of post-reward data and a time axis spanning 0 to 1 s.

Neuropixels analysis
We used Kilosort 2.5 to perform spike sorting. For all recordings (27 sessions across 4 mice), we applied the common average refer-

ence filter to the raw data prior to running Kilosort97 and used the following parameters: threshold = [10, 3], high pass filter = 100 Hz,

lowpass filter = 5000 Hz. To visualize and perform quality control on all of the clusters, we used the Phy98 template GUI and the ece-

phys99 quality metrics module.

Initially, we eliminated clusters with less than 100 spikes. We calculated the firing rate for each cluster in 30 second windows and

discarded those that fell outside the appropriate ranges (40 Hz-200 Hz for simple spikes, 0.4 Hz-3 Hz for complex spikes).

We confirmed PkC identities based on cross-correlation analysis to putative complex spike clusters, with a characteristic SS

‘‘pause’’ of �5-20ms after a CS (Figure S6). We then used confirmed PkCs as estimates of the physical location of PkC layers

along the Neuropixels shank (±10 channels/100mm71). Clusters within each PkC layer were considered potential simple spike clus-

ters based on minimum spike rate (40 Hz), inter-spike interval violations ratio (<2%), waveforms, and oscillatory auto-

correlograms.

To handle cells that were not present for the entire recording session, we computed the spike rate per trial, and then the 75th

percentile value across all trials with a mean rate >5 Hz, and defined a presence threshold as half this value. We then found the first

and last trial that exceeded this threshold. Across 162 putative PkCs, by this metric the average cell was present for 13±0.3 min, or

81±2% of the total recording length.

Statistics
A detailed panel-by-panel summary of all statistical tests and observation counts is provided in Table S1. As general principles, for

all comparisons of two groups of unpaired samples, we used the Wilcoxon Rank-Sum (Mann-Whitney U) test. For all comparisons

of two groups of paired samples, or to compare one group’s median to zero, we used the Wilcoxon Signed-Rank test. For all

comparisons of two distributions of samples, we used the Kolmogorov-Smirnov two-sample test. For all analyses of groups of

samples over stages of learning, we used an ANOVA evaluated on an ordinary least squares regression of the samples to the

learning stage.
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Plasticity simulations
Each imaged PkC dendrite reported activity of that PkC’s CF input. Imaged PkCs also likely received input from most imaged GrCs,

given our small imaging field. Classical GrC/PkC LTD depends only on relative activity of the CF and GrC input, to determine

whether that GrC input synapse is weakened at each point in time. We reasoned that, even without access to all GrC inputs to a

PkC, we could compute predicted changes in synaptic weight for all imaged GrCs based on simultaneous CF spiking. For simplicity,

we assumed that every PkC in our small field of view received input from all imaged GrCs, although in reality the proportion would be

lower.54,105

The central question of our study was how persistent reward-evoked CF spikes can set meaningful GrC/PkC synaptic input

strengths. Thus, we computed predicted LTD caused by CF spikes following reward within [0, 0.25] s. It remains unknown to

what degree spontaneous 1 Hz background CF spikes—which far outnumber evoked CF spikes—play a similar role in driving syn-

aptic changes, andwe considered this broader question beyond the scope of the current study. We thus restricted our analysis to CF

reward spikes, except in Figure S5Jwhenwe considered alternative inclusionwindows. Similarly, we focused onCFswith detectable

reward-evoked spiking, whose trial-averaged activity was higher after than prior to reward delivery (70% of all 6,439 CFs, spread

across all 117 sessions in 20 mice).

To predict GrC/PkC LTD from reward-evoked CF spikes, for each session, each PkC, and each GrC input, we computed a

‘‘running tally’’ of that GrC input’s LTD events. For every CF reward spike, we tabulated the GrC’s mean activity during the preceding

plasticity window [-150, -25] ms. This number—GrC activity just prior to CF reward spike—was taken to be the LTD event magnitude.

To bound LTDmagnitudes in a defined range [0, 1], we applied a logistic function to each LTDmagnitude ( 1
1+e�F=s; F = avg GrC signal in

LTD window; s = 95th percentile fluorescence value per cell).

To summarize the LTD for each GrC, we averaged LTD events across trials and across timepoints. This yielded a single GrC weight

vector for each PkC, size NGrC-by-1. In reality, opposing and homeostatic mechanisms likely maintain each PkC’s overall synaptic

drive in a physiological range. To account for without modeling these unobserved factors, we simply normalized each PkC’s GrC

weight vector to unit sum.

Finally, we subtracted the mean of this vector. This was necessary: taking a strictly positive weighted sum of cells will generally

produce an output that looks approximately like the average of the population.While GrC/PkC synapses are, in reality, strictly excit-

atory, an effect similar to mean-subtraction is likely achieved biologically by interneuron networks at the PkC output layer. Finally,

given CF uniformity in our small imaging fields, we averaged GrC weight vectors across PkCs. This resulted in a single GrC weight

vector per session, which we negated to account for the sign of LTD. These vectors gave rise to analyses in Figures 5 and S5.

To predict how GrC weights might affect PkC output, we used a minimal readout: a weighted sum of GrCs, with weights defined

above. The resulting weighted sums produced analyses in Figure 6 and S5.

Finally, we computed three control weighted sums. First, we computed a simple average across GrCs (uniform weights, e.g., Fig-

ure 6C). Alternatively, (brown in Figure 6), we simply randomly reordered the LTD weight vector above. Each GrC thus had a random

weight from the true distribution of LTD weights. In the final control, we repeated the entire above LTD procedure but instead using

randomly reordered GrC data. Specifically, for every trial and for every GrC, we randomly permuted the timepoints in the trial. Thus,

everyGrCmaintained the same distribution of fluorescence values, but its timingwas randomwith respect to theCF reward spikes. In

each case we then repeated the same analyses applied to the true data.

Parameters include: CF reward spike window ([0, 0.25] s); cutoff for included PkCs (average activity [0, 0.25] s > [-0.3, -0.025] s);

LTD window ([-0.15, -0.025] s); logistic function bounding LTD event magnitudes.

All simulation panels operated based only on LTD described above, except Figure S5K which explicitly modeled LTP. To simulate

LTP, for each CF we defined a threshold as the bottom 0.5% of all timepoints by firing rate, across trials. This threshold was empir-

ically chosen to yield a total number of LTP events comparable to the total number of LTD events. Each LTP event used the same LTD

‘‘eligibility window’’ of [-150, -25]ms tomeasure precedingGrC activity. As for LTD, we then tabulated eachGrC’s activity in each LTP

window to be the corresponding LTP event magnitude. The net plasticity effect was the sum of LTD and LTP event magnitudes.
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